中华流行病学杂志  2018, Vol. 39 Issue (4): 449-454   PDF    
http://dx.doi.org/10.3760/cma.j.issn.0254-6450.2018.04.012
中华医学会主办。
0

文章信息

李苹, 尚煜, 刘雅静, 昌雪莲, 姚红阳, 梁爱民, 齐可民.
Li Ping, Shang Yu, Liu Yajing, Chang Xuelian, Yao Hongyang, Liang Aimin, Qi Kemin.
孕期二十二碳六烯酸补充对婴儿生长发育和体质指数影响
Effect of docosahexenoic acid supplementation on infant's growth and body mass index during maternal pregnancy
中华流行病学杂志, 2018, 39(4): 449-454
Chinese Journal of Epidemiology, 2018, 39(4): 449-454
http://dx.doi.org/10.3760/cma.j.issn.0254-6450.2018.04.012

文章历史

收稿日期: 2017-08-08
孕期二十二碳六烯酸补充对婴儿生长发育和体质指数影响
李苹1, 尚煜2, 刘雅静3, 昌雪莲1, 姚红阳1, 梁爱民4, 齐可民1     
1. 100045 北京, 国家儿童医学中心 首都医科大学附属北京儿童医院 北京市儿科研究所营养研究室;
2. 100000 北京市朝阳区妇幼保健和计划生育服务中心儿童保健科;
3. 101300 北京市顺义区妇幼保健院儿童保健科;
4. 100045 北京, 国家儿童医学中心 首都医科大学附属北京儿童医院保健中心
摘要: 目的 探讨孕期二十二碳六烯酸(DHA)补充对婴儿生长发育和BMI影响。方法 采用队列研究,以2016年5-10月北京市两家区级妇幼保健院建档的1 516名孕产妇及其婴儿为研究对象,利用问卷调查在临产前获取孕产妇年龄、身高、体重、孕期体重增加量、分娩方式、孕周数、鱼类食用量及DHA补充情况。根据孕期DHA补充情况分为DHA补充组及非补充组。记录婴儿出生体重、身长、头围及BMI。随访至婴儿6月龄,监测其生长发育相关指标;其间收集产后1~3个月的母乳,用于测定脂肪酸含量。结果 孕妇DHA补充率为47.76%,其中孕早、中期即开始补充的分别占49.31%和39.64%。孕早期即开始补充DHA的孕妇母乳DHA含量高于非补充组,差异有统计学意义(P=0.006),而DHA补充始于孕中及晚期者未能提升母乳DHA含量(P > 0.05)。孕期DHA补充组婴儿出生及6月龄时身长和头围均高于非补充组,差异有统计学意义(P < 0.01),而BMI值低于非补充组,差异有统计学意义(P < 0.01)。进一步发现,孕早期和中期即开始DHA补充组婴儿出生及6月龄时身长均高于非补充组及孕晚期补充组,差异有统计学意义(P < 0.05);而BMI值低于非补充组及孕晚期补充组,差异有统计学意义(P < 0.01)。孕早期即开始DHA补充组婴儿出生时头围高于非补充组,差异有统计学意义(P=0.001),而6月龄时头围及头围增量均高于其他各组,差异有统计学意义(P < 0.01)。偏回归分析显示孕期DHA补充与婴儿出生及6月龄身长(r=0.324,r=0.216)、头围(r=0.221,r=0.302)及6个月内头围增量(r=0.276)呈正相关(P < 0.05),而与BMI值(r=-0.310,r=-0.371)呈负相关(P < 0.05)。结论 孕期DHA补充可促进胎儿与其出生后身长和头围发育,降低BMI值,并且补充越早效果越明显;这有助于更好地保证婴儿生长发育、预防后期肥胖发生。
关键词: 孕期     二十二碳六烯酸     婴儿     生长发育    
Effect of docosahexenoic acid supplementation on infant's growth and body mass index during maternal pregnancy
Li Ping1, Shang Yu2, Liu Yajing3, Chang Xuelian1, Yao Hongyang1, Liang Aimin4, Qi Kemin1     
1. Clinical Nutrition Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China;
2. Chaoyang District Maternal and Child Health Care and Family Planning Service Center, Child Healthcare Department, Beijing 100000, China;
3. Shunyi District Maternal and Child Health Care Hospital of Beijing, Child Health Care Department, Beijing 101300, China;
4. Health Care Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
Corresponding author: Qi Kemin, E-mail:qikemin@bch.com.cn
Fund program: Beijing Natural Science Foundation of China (7174302); Nutricia Research Foundation of Netherlands (2014-07, 2015-E2); Beijing Natural Science Foundation of China— Sanyuan Joint Foundation (S150006)
Abstract: Objective To investigate the effects of docosahexenoic acid (DHA) supplementation on infant's growth and BMI during pregnancy. Methods A total of 1 516 healthy pregnant women delivered their babies in two maternal and child health care hospitals in Beijing and were chosen as the subjects in this cohort study from May to October 2015. Self-developed questionnaires were used to gather general information of the subjects, including age, height, weight, weight gain during pregnancy, delivery mode, DHA supplementation etc., before giving birth. Information on body length, weight, head circumference and BMI at birth and 6 months postnatal, of the infants were recorded. Breast milk was collected to test the fatty acid profiles by using the gas chromatography (GC) method at one to three months postnatally. Results The overall rate of DHA supplementation was 47.76% among the pregnant women, in which introduction of DHA from the early and second stage of the pregnancy accounted for 49.31% and 39.64% respectively. When DHA supplementation began from the early pregnant stage, the DHA concentration showed an increase in the milk (P < 0.05), whereas the supplementation began from the second and third stages did not affect the milk DHA concentration (P > 0.05). Higher height and lower BMI were seen in the infants at birth and 6 months in the supplementation group when comparing to the non-supplementary group (P < 0.05), with the greatest effects noticed in the earliest supplementation group. Specifically, the head circumference appeared larger from the early pregnant stage in the DHA supplementary group, than that in the non-supplement group (P=0.001). The increment of head circumference was larger than that in the other groups when the infants were 6-month old (P < 0.01). Results from the partial regression analysis showed that during pregnancy, there were positive correlations between DHA supplementation and height (r=0.324, r=0.216), head circumference (r=0.221, r=0.302) as well as the increment of head circumference (r=0.276) at birth and 6 months (P < 0.05). Whereas, a negative correlation was shown between DHA and the infants' BMI (r=-0.310, r=-0.371) (P < 0.05) when supplementation was given during maternal pregnancy. Conclusions When DHA supplementation program was carried out during maternal pregnancy, it could increase the height and head circumference and inhibit the rapid increase of BMI in the infants BMI. Our findings seemed helpful in promoting brain development and preventing the childhood obesity.
Key words: Pregnancy     Docosahexenoic acid     Infants     Growth and development    

n-3多不饱和脂肪酸(n-3 polyunsaturated fatty acids,n-3 PUFAs),特别是二十二碳六烯酸(DHA),不但影响子代胎儿期的脑发育,还可通过调节脂代谢及脂肪细胞分化等影响婴儿体重[1-2]。目前我国孕妇DHA摄入量只有推荐摄入量的一半或更低,不仅直接影响胎儿脑发育,还可通过调控母亲产后乳汁中DHA含量而对婴儿出生后生长发育产生不良影响[3-4]。为此,本研究以北京市孕产妇及其新生儿为研究对象建立出生队列,探讨孕期DHA补充对婴儿生长发育和BMI的影响。

对象与方法

1.研究对象:为2016年5—10月在北京市两家区级妇幼保健院建档的1 516名健康孕妇及其婴儿(母子对)。根据孕期是否补充DHA,分为DHA补充组(服用DHA补充剂不少于12周)及非补充组(未进行DHA补充),并根据DHA初始补充时间,分为孕早期、孕中期及孕晚期补充组;婴儿出生后随访至6月龄。纳入标准:产妇及其新生儿为北京市常住居民,分娩婴儿为足月新生儿且纯母乳喂养,并能够保证婴儿1岁内一直在该保健院健康体检。排除标准:孕期母亲患有妊娠期高血压、低钾血症、糖尿病、心、肝、肾及血液系统相关疾病;孕期曾使用过抗生素及甲状腺素相关药物;新生儿患出生缺陷、遗传代谢病、感染性疾病、缺血缺氧性脑损伤及低体重儿等。本研究通过首都医科大学附属北京儿童医院伦理委员会审批;所有研究对象入组前均已告知,并签署知情同意书。

2.研究方法:

(1)问卷调查:临产前,对孕妇进行基本信息及膳食情况问卷调查。基本信息主要包括孕妇年龄、身高、职业、文化程度、孕前体重和孕期体重增加量及孕期DHA补充剂的使用情况;后基于文献复习及专家咨询,编制半定量“孕妇饮食频率表问卷”调查孕妇膳食情况,主要收集孕期鱼类等海产品(富含DHA)的食用情况(种类、量和频率)。婴儿出生后,详细记录分娩方式、孕周及新生儿性别。利用婴儿身长-体重测量仪(HW-1000HW-2000)及皮尺分别测定婴儿出生时及6月龄时的身长、体重及头围,并计算BMI。

(2)随访:将所有入组的母子对制作成Excel表格,由妇幼保健院儿保科医生在婴儿6月龄健康体检时记录婴儿健康状况、喂养情况及生长发育状况。最终有1 507名研究对象资料完整且准确,另9名研究对象因基本资料缺失或搬迁不在原保健院体检,后经电话调查以保证资料完整。

(3)母乳脂肪酸分析:于婴儿出生后1~3个月内在妇幼保健院体检时,要求母亲自愿采集中段乳汁5 ml,置15 ml无菌离心管利用冷链转至实验室-80 ℃冰箱保存。采用脂肪酸甲酯化-气相色谱方法(6890N,美国安捷伦公司)测定母乳n-3 PUFAs含量[5],以每种脂肪酸占总脂肪酸的百分比表示。

3.统计学分析:问卷资料及婴儿生长发育等数据采用EpiData 3.0软件双人双录入,以SPSS 21.0软件进行统计学分析,定量资料用x±s表示,定性资料用百分比或率(%)表示。各指标的比较采用χ2或独立样本t检验,多组数据比较采用方差分析。采用偏回归分析探讨DHA补充与婴儿出生6月龄时身长、体重、头围及BMI关系。

结果

1.基本情况:孕期(孕早、中及晚期)DHA补充组与非补充组在孕妇年龄、身高、孕前体重、孕期体重增加量、鱼类食用、文化程度、职业、新生儿性别、分娩方式及孕周等方面的差异均无统计学意义(表 1),提示这些混杂因素在各组人群中均衡可比。

表 1 母子对基本特征

2.孕期补充DHA情况:孕期DHA补充组与非补充组相比,鱼类等海产品食用情况及饮食来源DHA量的差异无统计学意义。孕期DHA补充率为47.76%,其中大多于孕早、中期开始补充,分别占49.31%和39.64%,而孕晚期补充者仅占11.05%(表 2)。

表 2 母亲孕期补充二十二碳六烯酸初始月份分析(P<0.001)

3.孕期补充DHA对母乳DHA含量的影响:对孕期不同DHA补充状况下母乳中脂肪酸含量及构成比进行分析(表 3),发现孕早期开始补充DHA,产后乳汁中DHA含量高于非补充组,差异有统计学意义(P=0.006),而孕中期和晚期开始补充DHA未能提升母乳中DHA含量(P>0.05)。同时发现,DHA补充始于孕早及中期的孕妇产后乳汁中总n-6 PUFAS、亚油酸(C18:2n-6)含量及AA/DHA比值均低于非补充组(P<0.05),单不饱和脂肪酸含量则明显高于非补充组(P<0.05)。

表 3 孕期二十二碳六烯酸初始补充时间对母乳DHA含量的影响

4.孕期补充DHA对婴儿出生和6月龄时生长发育的影响:孕期DHA补充组婴儿出生及6月龄时身长和头围均高于非补充组,差异有统计学意义(P<0.01),而BMI值低于非补充组,差异有统计学意义(P<0.01)。对孕期补充DHA的初始时间进行分层,发现孕早期和中期即开始DHA补充组,婴儿出生及6月龄时身长均高于非补充组及孕晚期补充组,差异有统计学意义(P<0.05);而BMI值低于非补充组及孕晚期补充组,差异有统计学意义(P<0.01)。孕早期即开始DHA补充组婴儿出生时头围大于非补充组,差异有统计学意义(P=0.001),而6月龄时头围及其增量均高于其他各组,差异有统计学意义(P<0.01)。见表 4

表 4 母亲孕期补充二十二碳六烯酸(DHA)对新生儿出生和6月龄时生长发育指标的影响

5.孕期补充DHA与婴儿生长发育指标的相关性:为进一步探讨孕期补充DHA(孕早期补充=3,孕中期补充=2,孕晚期补充=1,非补充组=0)与婴儿生长发育指标的相关性,调整可能的混杂因素如孕妇年龄、身高、孕前体重、孕期体重增加量、分娩方式(自然产=0,剖宫产=1)、孕周及新生儿性别(男=1,女=2)后,进行孕期DHA补充与婴儿生长发育指标的偏回归分析,结果显示,孕期DHA补充与婴儿出生及6月龄身长(r=0.324,r=0.216)、头围(r=0.221,r=0.302)及6月龄头围增量(r=0.276)呈正相关性(P<0.05),而与BMI值(r=-0.310,r=-0.371)呈负相关性(P<0.05)。同时孕期DHA补充与婴儿出生6个月内身长、体重及BMI增量无相关性(P>0.05)。

讨论

与n-6 PUFAs不同,n-3 PUFAs(主要包括EPA、DHA及其前体亚麻酸)在食物中分布较局限,主要自鱼类及亚麻籽油获取,同时人体利用前体亚麻酸(C18:3n-3)合成EPA及DHA的能力有限,因而母乳中DHA容易发生绝对或相对不足,进而影响婴儿DHA的摄入。现有流行病学研究发现,全球母乳DHA平均水平为0.37%,而日本、北欧地区及东南亚地区可高达2%[6-7]。国内对江苏省句容(河湖地区)、山东省日照(沿海地区)和河北省徐水(内陆地区)三地孕妇成熟乳的研究显示,DHA含量分别为0.41%、0.47%和0.24%;而本研究发现,北京地区服用DHA补充剂的孕妇,成熟乳中DHA的含量为0.31%,仅达到全球平均水平,而未补充深海鱼油的孕妇成熟乳中DHA的含量为0.13%,同时孕早期及中期开始DHA补充,显著提升了乳汁中总单不饱和脂肪酸和油酸(C18:1n-9)以及DHA含量,降低了总n-6 PUFAs含量以及AA/DHA比值。结果与文献报道一致[4, 8-9]

胎儿期和婴幼儿期是脑发育和聚集DHA的关键时期,其中孕晚期到出生后2岁是聚集的高峰时期;脑中DHA含量增加与脑重量增加一致,可见其对脑发育的重要性。此时期如n-3 PUFAs缺乏可减少脑中DHA含量,并严重影响脑的正常发育和功能,可能与儿童ADHD、自闭症以及多种出生缺陷的发生有关,而增加膳食n-3 PUFAs摄入则有一定的预防和治疗作用[10-12]。来自全球28个国家的数据显示,母乳DHA含量可以预示儿童认知发育水平[12]。本研究显示,孕期DHA补充组婴儿出生及6月龄时头围明显高于非补充组,提示有助于婴幼儿的脑发育。本研究前期动物实验发现,孕期及哺乳期饲料n-6/n-3 PUFAs比例在5 : 1至1 : 1时,能更好促进子代小鼠脑对DHA的聚集以及神经元、胶质细胞以及髓鞘的成熟,同时更好地抑制神经元的调亡[5, 13]。因此,脑对n-3 PUFAs以及DHA的需求量可能比目前膳食推荐量要大,但还需临床研究证实。

近年来研究显示,n-3 PUFAs与肥胖发生密切相关。临床补充鱼油n-3 PUFAs可以减少超重/肥胖患者体内脂肪含量[14];人群横断面调查发现n-3 PUFAs摄入减少、n-6/n-3 PUFAs比值升高与肥胖的高发生率相关[15]。胚胎期和哺乳期PUFAs的摄入以及n-6 PUFAs与n-3 PUFAs比例是早期脂肪细胞分化的重要影响因素,n-6 PUFAs摄入增加或n-6/n-3 PUFAs比例的升高可能与儿童早期肥胖发病相关[16]。本研究结果显示,孕早期和中期即开始补充DHA,婴儿出生及6月龄时BMI值明显低于非补充组及孕晚期补充组。

综上所述,孕期补充DHA可影响母乳中脂肪酸的构成,提升DHA浓度,促进胎儿与其出生后身长和头围发育,抑制BMI增加过快,并且补充越早效果越明显,有助于更好地保证婴儿生长发育、预防后期肥胖发生。


利益冲突:
参考文献
[1] Ouyang FX, Parker MG, Luo ZC, et al. Maternal BMI, gestational diabetes, and weight gain in relation to childhood obesity:the mediation effect of placental weight[J]. Obesity, 2016, 24(4): 938–946. DOI:10.1002/oby.21416
[2] Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology[J]. Nature, 2014, 510(7503): 92–101. DOI:10.1038/nature13479
[3] Zhang J, Wang CR, Gao YX, et al. Different intakes of n-3 fatty acids among pregnant women in 3 regions of China with contrasting dietary patterns are reflected in maternal but not in umbilical erythrocyte phosphatidylcholine fatty acid composition[J]. Nutr Res, 2013, 33(8): 613–621. DOI:10.1016/j.nutres.2013.05.009
[4] Nishimura RY, Barbieiri P, de Castro GS, et al. Dietary polyunsaturated fatty acid intake during late pregnancy affects fatty acid composition of mature breast milk[J]. Nutrition, 2014, 30(6): 685–689. DOI:10.1016/j.nut.2013.11.002
[5] Zhu HY, Fan CN, Xu F, et al. Dietary fish oil n-3 polyunsaturated fatty acids and alpha-linolenic acid differently affect brain accretion of docosahexaenoic acid and expression of desaturases and sterol regulatory element-binding protein 1 in mice[J]. J Nutr Biochem, 2010, 21(10): 954–960. DOI:10.1016/j.jnutbio.2009.07.011
[6] Fu YQ, Liu X, Zhou B, et al. An updated review of worldwide levels of docosahexaenoic and arachidonic acid in human breast milk by region[J]. Public Health Nutr, 2016, 19(15): 2675–2687. DOI:10.1017/S1368980016000707
[7] Koletzko B, Boey CCM, Campoy C, et al. Current information and Asian perspectives on long-chain polyunsaturated fatty acids in pregnancy, lactation, and infancy:systematic review and practice recommendations from an early nutrition academy workshop[J]. Ann Nutr Metab, 2014, 65(1): 49–80. DOI:10.1159/000365767
[8] Lapillonne A, Picaud JC, Chirouze V, et al. The use of low-EPA fish oil for long-chain polyunsaturated fatty acid supplementation of preterm Infants[J]. Pediatr Res, 2000, 48(6): 835–841. DOI:10.1203/00006450-200012000-00022
[9] He YJ, Qiu CY, Guo Z, et al. Production of new human milk fat substitutes by enzymatic acidolysis of microalgae oils from Nannochloropsis oculata and Isochrysis galbana[J]. Bioresour Technol, 2017, 238: 129–138. DOI:10.1016/j.biortech.2017.04.041
[10] Janssen CIF, Kiliaan AJ. Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence:The influence of LCPUFA on neural development, aging, and neurodegeneration[J]. Prog Lipid Res, 2014, 53: 1–17. DOI:10.1016/j.plipres.2013.10.002
[11] Williams JJ, Mayurasakorn K, Vannucci SJ, et al. N-3 fatty acid rich triglyceride emulsions are neuroprotective after cerebral hypoxic-ischemic injury in neonatal mice[J]. PLoS One, 2013, 8(2): e56233. DOI:10.1371/journal.pone.0056233
[12] Lassek WD, Gaulin SJ. Linoleic and docosahexaenoic acids in human milk have opposite relationships with cognitive test performance in a sample of 28 countries[J]. Prostaglandins Leukot Essent Fatty Acids, 2014, 91(5): 195–201. DOI:10.1016/j.plefa.2014.07.017
[13] Tian CY, Fan CN, Liu XL, et al. Brain histological changes in young mice submitted to diets with different ratios of n-6/n-3 polyunsaturated fatty acids during maternal pregnancy and lactation[J]. Clin Nutr, 2011, 30(5): 659–667. DOI:10.1016/j.clnu.2011.03.002
[14] Bender N, Portmann M, Heg Z, et al. Fish or n-3 PUFA intake and body composition:a systematic review and meta-analysis[J]. Obes Rev, 2014, 15(8): 657–665. DOI:10.1111/obr.12189
[15] Ailhaud G, Massiera F, Weill P, et al. Temporal changes in dietary fats:role of n-6 polyunsaturated fatty acids in excessive adipose tissue development and relationship to obesity[J]. Prog Lipid Res, 2006, 45(3): 203–236. DOI:10.1016/j.plipres.2006.01.003
[16] Muhlhausler BS, Ailhaud GP. Omega-6 polyunsaturated fatty acids and the early origins of obesity[J]. Curr Opin Endocrinol Diabetes Obes, 2013, 20(1): 56–61. DOI:10.1097/MED.0b013e32835c1ba7