中华流行病学杂志  2021, Vol. 42 Issue (5): 948-954   PDF    
http://dx.doi.org/10.3760/cma.j.cn112338-20201021-01258
中华医学会主办。
0

文章信息

刘翰谕, 魏霞, 赵天朔, 韩冰峰, 刘贝, 杨莉, 崔富强.
Liu Hanyu, Wei Xia, Zhao Tianshuo, Han Bingfeng, Liu Bei, Yang Li, Cui Fuqiang
国内外儿童用联合疫苗免疫原性、安全性和社会价值
Review on immunogenicity, safety and social value of combined vaccines for children used both at home and abroad
中华流行病学杂志, 2021, 42(5): 948-954
Chinese Journal of Epidemiology, 2021, 42(5): 948-954
http://dx.doi.org/10.3760/cma.j.cn112338-20201021-01258

文章历史

收稿日期: 2020-10-21
国内外儿童用联合疫苗免疫原性、安全性和社会价值
刘翰谕1 , 魏霞1 , 赵天朔1 , 韩冰峰1 , 刘贝1 , 杨莉2 , 崔富强1     
1. 北京大学公共卫生学院 100191;
2. 北京大学医学部卫生政策与技术评估中心 100191
摘要: 联合疫苗含有两种或多种抗原,研究认为接种联合疫苗后能预防多种疾病,同时可减少接种次数。本文对国内外儿童用联合疫苗,如无细胞百白破疫苗(DTaP)、麻疹-风疹-腮腺炎疫苗(MMR)等免疫原性和安全性进行综述,并从儿童家长、预防接种工作者和卫生服务方面进行社会价值探究,为我国推动联合疫苗研发和使用提供决策证据。研究发现,联合疫苗对儿童、家长、预防接种工作者和卫生服务方面均产生较好的收益,能够保证其良好的免疫原性和安全性,增强家长的接种便利和经济性,提高预防接种工作者的工作效率,同时能弥补新发疫情对免疫服务造成的影响,提高接种覆盖率和及时率,增加社会收益。目前我国联合疫苗的推广受到技术瓶颈多,人群接种认知水平低等限制。建议加强联合疫苗安全性、有效性和卫生经济学等方面研究,科学评估联合疫苗的价值;增强公众对联合疫苗的认知和信任度;促进多联多价疫苗研发应用;政府应完善法规协助联合疫苗发展。
关键词: 联合疫苗    儿童    免疫原性    安全性    价值    
Review on immunogenicity, safety and social value of combined vaccines for children used both at home and abroad
Liu Hanyu1 , Wei Xia1 , Zhao Tianshuo1 , Han Bingfeng1 , Liu Bei1 , Yang Li2 , Cui Fuqiang1     
1. School of Public Health, Peking University, Beijing 100191, China;
2. Center for Health Policy and Technology Evaluation, Peking University Health Science Center, Beijing 100191, China
Abstract: Combined vaccines contain two or more antigens. Research suggested that combined vaccines could prevent multi diseases and reduce the frequency of vaccination. This article focus on combined vaccines for children used both at home and abroad, such as diphtheria-pertussis-tetanus vaccine (DTaP), measles-rubella-mumps vaccine (MMR), etc. and summarizes their immunogenicity, safety and social values, including benefits to families, vaccination workers and health services, to provide evidence for promoting the research, development and use of combined vaccines in China. We found that combined vaccines can not only ensure the immunogenicity and safety, but also give convenient and lower cost vaccination to families, and using combined vaccines can improve the work efficiency of vaccination workers, reduce the impact of the epidemic on immunization services and improve vaccination coverage and timeliness. At present, the promotion of combined vaccines in China is restricted by many technical bottlenecks, high prices, and low awareness among people. It is recommended that research on the safety, effectiveness and health economics of combined vaccines should be strengthened, and the value of combined vaccines should be scientifically evaluated; the public's awareness and trust in combined vaccines should be enhanced, as well as the development and application of multi-linked multivalent vaccines should be promoted. The government should improve regulations to assist the development and application of combined vaccines.
Key words: Combined vaccines    Children    Immunogenicity    Safety    Value    

联合疫苗指含有两种或多种活的、灭活的微生物或者提纯的抗原,可以在减少接种次数的同时预防更多种类的疾病,能解决就诊和接种次数增加的问题[1]。联合疫苗包括多疾病联合疫苗和单疾病多型别联合疫苗。多疾病联合疫苗是联合多个不同疾病种类疫苗,预防多种疾病,如麻疹-风疹-腮腺炎疫苗(MMR);而单疾病多型别联合疫苗一般包括同一种细菌或病毒的不同亚型或血清型,如肺炎球菌多价疫苗[2]

联合疫苗的研发和应用已有数十年的历史。1948年,由白喉、破伤风与灭活全细胞百日咳疫苗组成的全细胞百白破联合疫苗(DTwP)在美国获批上市。1981年无细胞百白破疫苗(DTaP)研制成功,1991年在美国被批准使用[3]。90年代以来,又陆续出现了百白破-灭活脊髓灰质炎联合疫苗(DTaP-IPV),无细胞百白破-b型流感嗜血杆菌联合疫苗(DTaP/Hib)等多联形式的疫苗[4],联合疫苗的种类不断丰富。

考虑到联合疫苗在提升疫苗覆盖率和卫生服务管理效率等方面的优势,全球范围内的大多数发达国家都制定了联合疫苗的使用推荐意见。美国CDC的免疫实施咨询委员会指出,为了尽量减少儿童接种次数,应使用联合疫苗,而不是其等效单剂疫苗[1]。全球疫苗免疫联盟(GAVI)也充分认可联合疫苗在节省包括设备、运输、废料处理等方面成本中带来的社会经济价值,最近20年以来,GAVI协助全球73个国家使用全细胞百白破-灭活脊髓灰质炎-b型流感嗜血杆菌联合疫苗,大幅提升当地接种率,保护了超过4亿儿童[5]。目前,联合疫苗在各国已得到广泛使用,无细胞百白破-乙型肝炎-灭活脊髓灰质炎-b型流感嗜血杆菌联合疫苗(DTaP-HBV-IPV/Hib)已在110多个国家获批,并有30多个国家将其纳入了国家免疫规划。

1、联合疫苗的免疫原性和安全性

(1)DTaP-X联合疫苗:

① DTaP/Hib、DTaP-IPV四联疫苗:Li等[6]在2010年选取中国720名3月龄婴儿,随机分配到DTaP/Hib(国产)组和DTaP+Hib组进行接种,结果显示,两组的不良反应发生率均较低,每种抗体血清转化率均超过90%,联合疫苗在免疫原性和安全性方面均不低于分开单独接种。这一结果与Nilsson等[7]、李艳萍等[8]研究相似。Aristegui等[9]通过西班牙216名婴幼儿随机对照试验表明,与分开单独接种疫苗组相比,DTaP/Hib组具有更好的免疫原性和安全性。Black等[10]在美国招募了4 209名4~6岁儿童,随机接种DTaP-IPV和DTaP+IPV的结果显示,该四联疫苗比分开接种具有非劣效的免疫原性,且安全性良好,该结果与韩国Lee等[11]、Kim等[12]研究相似。

② 无细胞百白破-灭活脊髓灰质炎-b型流感嗜血杆菌联合疫苗(DTaP-IPV/Hib)、无细胞百白破-乙型肝炎-b型流感嗜血杆菌联合疫苗(DTaP-HBV/Hib)五联疫苗:我国1 809名婴幼儿的随机对照试验表明,与DTaP/Hib+IPV分开接种相比,DTaP-IPV/Hib通常具有良好的耐受性,并能对健康婴儿的5种疫苗抗原产生稳定的抗体反应[13]。该结果与韩国[14-15]、英国[16]等国的研究相似。同样,与DTaP-IPV+Hib[17]、DTaP+IPV+Hib[18]相比,联合疫苗的免疫原性和安全性良好。但是,Yüksel等[19]通过449名12月龄婴儿的随机对照试验得出,单独接种组比DTaP-IPV/Hib组的免疫原性更好。从整体看,DTaP-IPV/Hib的免疫原性和安全性均不劣于单独接种单价的疫苗。Gabutti等[20]通过360名婴幼儿的随机对照试验比较了DTaP-HBV/Hib五联疫苗和DTaP-HBV+Hib疫苗接种反应,结果显示该联合疫苗具备较好的安全性、免疫原性和耐受性,能简化儿童的免疫接种程序。

③ DTaP-HBV-IPV/Hib六联疫苗:2004年,德国一项2 883名3~5月龄婴儿的随机对照试验表明,DTaP-HBV- IPV/Hib组和DTaP-IPV/Hib+HBV分开接种组的免疫原性和安全性相似[21]。该结论得到了同类型研究的证明[22-26]。Arístegui等[27]通过多中心试验,比较了分别接受DTaP-HBV-IPV/Hib和DTaP-HBV+Hib接种的两组婴儿情况,得出联合疫苗组发热的不良反应率略高,其余安全性评价结果相似,且联合疫苗和单独接种疫苗对百日咳抗原的应答率分别超过97.0%和90.0%,免疫原性均较好。

(2)MMR-X联合疫苗:吴媛和黎丽[28]在2016年对国产MMR进行了相关研究发现,300名8~12月龄儿童分为MMR组、麻疹疫苗组、腮腺炎疫苗组和风疹疫苗组4个接种组的总不良反应发生率分别为9.3%、8.0%、8.0%和10.7%,即MMR与传统的接种单一疫苗比较,没有增加不良反应的发生率。且接种MMR组婴儿的麻疹、腮腺炎和风疹抗体转阳率较好(分别为100.0%、92.0%和100.0%),但其风疹几何平均滴度明显上升,为1∶320。该结果与于丹和汪静[29]、胡丽娜[30]的研究相似。刘卫民等[31]发现国产MMR与风疹疫苗的免疫原性两组之间无明显差异,国产MMR具有良好的免疫原性。

此外,麻疹-腮腺炎-风疹-水痘联合疫苗(MMRV)效果也受到了研究者的广泛关注。欧洲的德国、奥地利、法国和意大利[32-35],亚洲的中国、印度等[28, 36-38]国家,MMRV与单独接种相比,具有相似或非劣的免疫原性和安全性。但也有研究发现,MMRV在初期接种时可能增加发热、惊厥、疼痛的发生率[34, 39-48]

2、联合疫苗的社会价值

(1)联合疫苗对儿童家长的价值:Dodd[49]认为,联合疫苗可减少婴儿疼痛感的次数从而减少了父母的焦虑情绪。Meyerhoff等[50]对294名父母进行为减轻或避免儿童接种疼痛和情绪困扰的支付意愿的问卷调查,结果显示,父母愿意为此付出更多经济成本,以避免儿童接种疫苗引起的疼痛和情绪的困扰,经计算愿意避免的单次接种平均成本为30.3美元,中位数为8.1美元。

Shono和Kondo[51]对母亲选择联合疫苗的偏好的相关研究发现,日本1 243名2~3岁儿童母亲的网络调查问卷结果显示,母亲表现出对联合疫苗能预防多种疾病的偏好,并认为联合疫苗能减少就诊和接种次数,降低平均价格和不良事件的风险。值得肯定的是,联合疫苗的使用不仅减少了儿童错过疫苗接种时间的可能性[52-53],提高了父母陪同儿童接种疫苗的便利性,还减少了交通、误工的费用,特别是对于高收入人群[49, 54-55]

(2)联合疫苗对接种工作者的价值:使用联合疫苗减少了接种的次数,简化了接种医生的工作流程[56],降低了疫苗的整体管理费用,降低了接种服务方的总成本[52, 57]。Pellissier等[58]发现,使用联合疫苗后,接种门诊总护理时长有明显减少,能提高接种医生和疫苗管理人员的工作效率。Dodd[49]认为联合疫苗的使用有助于降低存储成本,并且由于减少了注射器的使用而减少了医生工作失误、针刺受伤的风险。

(3)联合疫苗对卫生服务的价值:

① 经济学价值:刘卫民等[59]对深圳市≤14岁儿童接种MMR进行成本-效益分析的研究发现,2007年深圳市≤14岁儿童麻疹、腮腺炎及风疹的发病人数分别为3 795、1 413和48例,平均每例麻疹、风疹、腮腺炎造成的总经济负担分别为1 063.9、935.5、759.1元,这3种传染病给国家和家庭造成的总经济损失为5 395 949.4元。若给这些儿童接种1剂次MMR,则成本-效益比为11.4∶1;接种2剂次MMR,则成本-效益比为5.7∶1,MMR可产生巨大的经济效益和社会效益。

国外研究中,Hammerschmidt等[60]对德国采用MMRV预防水痘的经济成本进行分析,对比12~15岁青少年接种单价水痘疫苗和11~23月龄儿童接种两剂MMRV后在2~17岁接种单价水痘疫苗两种策略,发现使用MMRV可以节省卫生体系和全社会两个层面成本。Zhou等[61]对2009年美国4 261 494名婴儿的出生队列进行全生命周期的随访调查,分析儿童常规免疫接种DTaP和MMR等9种疫苗发现,接种疫苗可减少或预防4.2万例过早死亡和2 000万例疾病,可节省135亿美元的直接成本和688亿美元的总社会成本,儿童常规接种这9种疫苗的直接和社会效益-成本比分别为3.0和10.1。Rivière等[62]对加拿大儿童接种MMR的潜在经济利益进行分析,发现在18月龄时接种第二剂MMR可预防9 200例麻疹、6 120例腮腺炎和1 960例风疹,每花费1美元用于接种从卫生体系的角度可节省6.3美元,从全社会角度可节省3.3美元,第二剂MMR的常规免疫将产生成本节约。

② 接种覆盖率和及时性价值:Happe等[63]对无细胞百白破-乙型肝炎-脊髓灰质炎(DTaP-HBV-IPV)五联疫苗的接种覆盖率和及时性进行了研究。出生队列中,是否接种过DTaP-HBV-IPV五联疫苗的1 730名儿童采用1∶1配对纳入并随访2年,结果显示,接种过该联合疫苗的儿童中该年龄所有推荐疫苗接种完成率和及时率分别为86.9%和45.2%,均高于对照组74.1%和37.5%。一项美国部分地区的回顾性免疫覆盖率调查发现,单次访问接种门诊但未能获得多种推荐疫苗的接种是导致疫苗覆盖率降低的原因之一[64]。联合疫苗能改善或解决该问题,帮助简化当前的免疫规划程序,解决不同疫苗错开接种时间有限的问题,增加接种及时性和接种覆盖率,对总体预防接种有益[49, 53, 56, 65-66]

③ 疫情影响下的应急价值:2019年12月以来,全球各国开始暴发新型冠状病毒肺炎(新冠肺炎)疫情[67-68],据WHO调查,2020年3-6月,几乎所有国家的卫生服务都受到干扰,其中推广常规免疫(70%)和由医疗机构提供的常规免疫接种(61%)服务中断明显[69]。新型冠状病毒存在人传人机制[70],为降低人群聚集风险,避免疫情进一步扩散,我国各地陆续暂停或调整了当地预防接种工作安排,强调科学统筹新冠肺炎疫情防控和预防接种工作[71]。WHO认为,由儿童错过常规免疫接种而造成的可避免的痛苦和死亡可能远远超过新冠肺炎疫情本身,号召各国保证疫苗的覆盖率[72-73]。在疾病大流行的情况下,联合疫苗作为国家免疫规划疫苗的有益补充,可以发挥减少接种针次、接种单位访问次数从而降低感染相关疾病风险的优势[74];同时增加了疫苗的覆盖率,为防控其他传染性疾病提供保障。

3、联合疫苗在我国的发展

(1)发展现状:随着国家扩大免疫规划的推进,免疫规划疫苗种类增加至14种,可预防传染病15种,接种剂次增加至22~25剂/人[75]。《中华人民共和国疫苗管理法》提出“国家根据疾病流行情况、人群免疫状况等因素,制定相关研制规划,安排必要资金,支持多联多价等新型疫苗的研制”[76]。相关领域专家对今后联合疫苗的研发上市及未来应用策略持积极态度[74]

我国联合疫苗研发与使用起步较晚,品种较少[77]。根据国家药品监督管理局数据,我国联合产品以吸附白喉破伤风联合疫苗等低联疫苗居多[78]。目前常用联合疫苗有DTaP、MMR和A群C群流脑多糖疫苗,尽管近年来23价肺炎多糖疫苗、DTaP/Hib四联疫苗、AC群脑膜炎球菌(结合)b型流感嗜血杆菌三联疫苗、四价流感病毒裂解疫苗、人乳头瘤病毒疫苗等联合疫苗陆续上市,但是仍有较多联合疫苗,如13价肺炎多糖结合疫苗和DTaP-IPV/Hib五联疫苗依赖进口,需求量较大[79]

(2)联合疫苗应用:尽管联合疫苗是今后发展的趋势,但其推广使用仍有很多限制。在供给市场方面,联合疫苗的研发和初始阶段成本较高,因受各种因素制约,联合疫苗接种率偏低。当下社会对新疫苗研发、引入和联合的需求不断,这可能导致原有联合疫苗潜在市场缩短[80]。此外,我国联合疫苗行业还存在瓶颈较多,如DTaP共纯化工艺生产含有的硫柳汞会破坏IPV抗原的免疫原性[79]、研究阶段的疫苗联合程度较低、联合疫苗和单一疫苗接种程序不一致、法规制度下企业合作受限[81]等问题。

在市场需求方面:①联合疫苗主要为自费疫苗:除DTaP、MMR外,现有联合疫苗均属于非免疫规划类疫苗,均由接种者自愿自费接种[82]。目前我国非免疫规划类疫苗接种与收入水平相关[83],且研究表明价格是影响非免疫规划类疫苗接种的重要因素之一[84-85]。②公众对非免疫规划类疫苗的认知程度普遍不高,接种率较低:一项延边朝鲜族自治州儿童家长对非免疫规划类疫苗的调查发现,家长对非免疫规划类疫苗认知及格率仅为15.7%,接种过至少一种非免疫规划类疫苗仅占74.5%[86]。③接种工作者推荐意愿偏低:据调查,某地区预防接种门诊医护人员对DTaP/Hib、DTaP-IPV/Hib的知识知晓率均为71.7%,推荐意愿分别为60.2%和42.2%[87]

4、小结

联合疫苗的使用对儿童、家长、预防接种医生和卫生服务方面均有较好的效益,能够在保证免疫原性和安全性的前提下,减少就诊次数,提高家长的便利性和经济性,提高接种工作者的工作效率,快速弥补疫情对免疫服务的影响,增加接种覆盖率和及时性,提高社会收益(表 1)。

表 1 联合疫苗社会价值研究维度和主要结果发现

但国内目前关于联合疫苗价值研究相对较少,联合疫苗的应用价值并没有得到充分的认识。目前对联合疫苗的卫生经济学评价主要为以疾病负担为主的成本分析或成本-效益分析,缺少以单一疫苗为对照的成本-效果或成本-效用分析,应当考虑疫苗接种对儿童生活质量的影响,以及全面纳入各项相关的成本包括非医疗成本和间接成本进行测算。应正确认识联合疫苗的应用价值,通过科学、可靠的评价方法对联合疫苗的安全性、免疫原性、卫生经济学及公共卫生价值进行评价,科学开展多联多价等新型疫苗的研发和使用。

同时应提高公众对联合疫苗的认同度。只有对联合疫苗的价值得到认可,才能促进接种率的提高,确保联合疫苗的持续发展。疫苗研究、生产单位应当不断更新技术,加强创新,促进多联、多价疫苗的开发利用。政府应鼓励联合疫苗研发创新,加强审评部门与免疫策略制定部门之间的沟通,制定多元化的疫苗使用策略,允许联合疫苗接种程序在早期阶段有一定的灵活性,以推动人群整体免疫接种率的提高。

利益冲突  所有作者均声明不存在利益冲突

参考文献
[1]
Prevention Centers for Disease Control. Combination vaccines for childhood immunization[EB/OL]. (1999-05-14)[2020-09-01]. https://www.cdc.gov/mmwr/preview/mmwrhtml/rr4805a1.htm.
[2]
庄敏, 李迪. 联合疫苗的研究进展[J]. 国外医学: 预防、诊断、治疗用生物制品分册, 2004, 27(3): 102-106.
Zhuang M, Li D. Research progress of combination vaccine[J]. For Med Sci: Sect Biol Prophyl Diagn Ther, 2004, 27(3): 102-106. DOI:10.3760/cma.j.issn.1673-4211.2004.03.002
[3]
牟大超, 孙明波. 联合疫苗的研究进展[J]. 中国疫苗和免疫, 2016, 22(6): 697-701.
Mou DC, Sun MB. Progress in research on combination vaccine[J]. Chin Vaccin Immuno, 2016, 22(6): 697-701.
[4]
卫辰, 侯启明, 张庶民, 等. 以百白破疫苗为基础的联合疫苗研究进展和展望[J]. 中华预防医学杂志, 2012, 46(9): 853-856.
Wei C, Hou QM, Zhang SM, et al. Research progress and prospects of combined vaccines based on DPT vaccine[J]. Chin J Prev Med, 2012, 46(9): 853-856. DOI:10.3760/cma.j.issn.0253-9624.2012.09.017
[5]
Dykstra S, Glassman A, Kenny C, et al. Regression discontinuity analysis of gavi's impact on vaccination rates[J]. Journal of Development Economics, 2019, 140: 12-25. DOI:10.1016/j.jdeveco.2019.04.005
[6]
Li GF, Zhang HJ, Zhou WZ, et al. Safety and immunogenicity of a diphtheria, tetanus, acellular pertussis and Haemophilus influenzae type B combination vaccine compared with separate administration of licensed equivalent vaccines in Chinese infants and toddlers for primary and booster immunization[J]. Vaccine, 2010, 28(25): 4215-4223. DOI:10.1016/j.vaccine.2010.03.061
[7]
Nilsson L, Faldella G, Jacquet JM, et al. A fourth dose of DTPa-IPV vaccine given to 4-6 years old children in Italy and Sweden following primary vaccination at 3, 5 and 11-12 months of age[J]. Scand J Infect Dis, 2005, 37(3): 221-229. DOI:10.1080/00365540410020884
[8]
李艳萍, 李凤祥, 侯启明, 等. 中国婴幼儿接种吸附无细胞百白破灭活脊髓灰质炎和b型流感嗜血杆菌(结合)联合疫苗的安全性和免疫原性研究[J]. 中华流行病学杂志, 2011, 32(8): 808-815.
Li YP, Li FX, Hou QM, et al. lmmunogenicity and safety of DTaP-IPV/PRP-T combined vaccine in infants in China[J]. Chin J Epidemiol, 2011, 32(8): 808-815. DOI:10.3760/cma.j.issn.0254-6450.2011.08.017
[9]
Aristegui J, Garcia-Corbeira P, de La Flor J, et al. Reactogenicity and safety of DTPa vaccine and Haemophilus influenzae type B conjugate vaccine (Hib) in a single injection vs DTPw and Hib as separate injections as a booster vaccination in 18-month-old children[J]. Clin Drug Invest, 2001, 21(1): 9-16. DOI:10.2165/00044011-200121010-00002
[10]
Black S, Friedland L, Ensor K, et al. Diphtheria-tetanus-acellular pertussis and inactivated poliovirus vaccines given separately or combined for booster dosing at 4-6 years of age[J]. Pediatr Infect Dis J, 2008, 27(4): 341-346. DOI:10.1097/INF.0b013e3181616180
[11]
Lee SY, Hwang HS, Kim JH, et al. Immunogenicity and safety of a combined diphtheria, tetanus, acellular pertussis, and inactivated poliovirus vaccine (DTaP-IPV) compared to separate administration of standalone DTaP and IPV vaccines: a randomized, controlled study in infants in the Republic of Korea[J]. Vaccine, 2011, 29(8): 1551-1557. DOI:10.1016/j.vaccine.2010.12.094
[12]
Kim CH, Cha SH, Shin SM, et al. Immunogenicity, reactogenicity and safety of a combined DTPa-IPV vaccine compared with separate DTPa and IPV vaccines in healthy Korean infants[J]. Korean J Pediatr Infect Dis, 2010, 17(2): 156-168. DOI:10.14776/kjpid.2010.17.2.156
[13]
Li YP, Li R, Ye Q, et al. Safety, immunogenicity and persistence of immune response to the combined diphtheria, tetanus, acellular pertussis, poliovirus and Haemophilus influenzae type B conjugate vaccine (DTPa-IPV/Hib) administered in Chinese infants[J]. Hum Vaccin Immunother, 2017, 13(3): 588-598. DOI:10.1080/21645515.2016.1239670
[14]
Kang JH, Lee HJ, Kim KH, et al. The immunogenicity and safety of a combined DTaP-IPV/Hib vaccine compared with individual DTaP-IPV and hib (PRP~T) vaccines: a randomized clinical trial in south korean infants[J]. J Korean Med Sci, 2016, 31(9): 1383-1391. DOI:10.3346/jkms.2016.31.9.1383
[15]
Kim KH, Kim CS, Kim HM, et al. Immunogenicity and safety of a combined DTPa-IPV/Hib vaccine administered as a three-dose primary vaccination course in healthy Korean infants: phase Ⅲ, randomized study[J]. Hum Vaccin Immunother, 2019, 15(2): 317-326. DOI:10.1080/21645515.2018.1536588
[16]
Kitchin N, Southern J, Morris R, et al. A randomised controlled study of the reactogenicity of an acellular pertussis-containing pentavalent infant vaccine compared to a quadrivalent whole cell pertussis-containing vaccine and oral poliomyelitis vaccine, when given concurrently with meningococcal group C conjugate vaccine to healthy UK infants at 2, 3 and 4 months of age[J]. Vaccine, 2006, 24(18): 3964-3970. DOI:10.1016/j.vaccine.2006.02.018
[17]
Halperin SA, King J, Law B, et al. Safety and immunogenicity of Haemophilus influenzae-tetanus toxoid conjugate vaccine given separately or in combination with a three-component acellular pertussis vaccine combined with diphtheria and tetanus toxoids and inactivated poliovirus vaccine for the first four doses[J]. Clin Infect Dis, 1999, 28(5): 995-1001. DOI:10.1086/514741
[18]
Guerra FA, Blatter MM, Greenberg DP, et al. Safety and immunogenicity of a pentavalent vaccine compared with separate administration of licensed equivalent vaccines in US infants and toddlers and persistence of antibodies before a preschool booster dose: a randomized, clinical trial[J]. Pediatrics, 2009, 123(1): 301-312. DOI:10.1542/peds.2007-3317
[19]
Yüksel N, Beyazova U, Balci IF, et al. Immunogenicity of a Haemophilus influenzae type B-tetanus conjugate vaccine when administered separately or in combined vaccines for primary immunization in two consecutive national schedules in Turkey[J]. Int J Infect Dis, 2012, 16(5): e354-357. DOI:10.1016/j.ijid.2012.01.005
[20]
Gabutti G, Bona G, Dentico P, et al. Immunogenicity and reactogenicity following primary immunisation with a combined DTaP-HBV vaccine and a Haemophilus influenzae type B vaccine administered by separate or mixed injection[J]. Clin Drug Investig, 2005, 25(5): 315-323. DOI:10.2165/00044011-200525050-00004
[21]
Zepp F, Knuf M, Heininger U, et al. Safety, reactogenicity and immunogenicity of a combined hexavalent tetanus, diphtheria, acellular pertussis, hepatitis B, inactivated poliovirus vaccine and Haemophilus influenzae type B conjugate vaccine, for primary immunization of infants[J]. Vaccine, 2004, 22(17-18): 2226-2233. DOI:10.1016/j.vaccine.2003.11.044
[22]
Klein NP, Abu-Elyazeed R, Cheuvart B, et al. Immunogenicity and safety following primary and booster vaccination with a hexavalent diphtheria, tetanus, acellular pertussis, hepatitis B, inactivated poliovirus and Haemophilus influenzae type B vaccine: a randomized trial in the United States[J]. Hum Vaccines Immunother, 2019, 15(4): 809-821. DOI:10.1080/21645515.2018.1549449
[23]
Avdicova M, Crasta PD, Hardt K, et al. Lasting immune memory against hepatitis B following challenge 10-11 years after primary vaccination with either three doses of hexavalent DTPa-HBV-IPV/Hib or monovalent hepatitis B vaccine at 3, 5 and 11-12 months of age[J]. Vaccine, 2015, 33(23): 2727-2733. DOI:10.1016/j.vaccine.2014.06.070
[24]
Lim FS, Han HH, Jacquet JM, et al. Primary vaccination of infants against hepatitis B can be completed using a combined hexavalent diphtheria-tetanus-acellular pertussis-hepatitis B-inactivated poliomyelitis-Haemophilus influenzae type B vaccine[J]. Ann Acad Med Singap, 2007, 36(10): 801-806.
[25]
Cheng HK, Rajadurai VS, Amin Z, et al. Immunogenicity and reactogenicity of two regimens of diphtheria-tetanus-acellular pertussis-hepatitis B-inactivated polio and Haemophilus influenzae type B vaccines administered to infants primed at birth with hepatitis B vaccine[J]. Southeast Asian J Trop Med Public Health, 2004, 35(3): 685-692.
[26]
Avdicová M, Prikazský V, Hudecková H, et al. Immunogenicity and reactogenicity of a novel hexavalent DTPa-HBV-IPV/Hib vaccine compared to separate concomitant injections of DTPa-IPV/Hib and HBV vaccines, when administered according to a 3, 5 and 11 month vaccination schedule[J]. Eur J Pediatr, 2002, 161(11): 581-587. DOI:10.1007/s00431-002-1079-5
[27]
Arístegui J, Dal-Ré R, Díez-Delgado J, et al. Comparison of the reactogenicity and immunogenicity of a combined diphtheria, tetanus, acellular pertussis, hepatitis B, inactivated polio (DTPa-HBV-IPV) vaccine, mixed with the Haemophilus influenzae type B (Hib) conjugate vaccine and administered as a single injection, with the DTPa-IPV/Hib and hepatitis B vaccines administered in two simultaneous injections to infants at 2, 4 and 6 months of age[J]. Vaccine, 2003, 21(25/26): 3593-3600. DOI:10.1016/s0264-410x(03)00420-1
[28]
吴媛, 黎丽. 儿童接种麻腮风联合减毒活疫苗的安全性及免疫学效果观察[J]. 中国药房, 2016, 27(35): 4980-4982.
Wu Y, Li L. Safety and immunological effects of Measles-Mumps-Rubella attenuated live vaccine in children[J]. China Pharm, 2016, 27(35): 4980-4982. DOI:10.6039/j.issn.1001-0408.2016.35.27
[29]
于丹, 汪静. 儿童接种麻腮风联合减毒活疫苗的安全性及免疫学疗效观察[J]. 中国当代医药, 2017, 24(30): 157-159, 165.
Yu D, Wang J. Safety and immunological curative effect observation of measles, mumps, and rubella combined attenuated live vaccination in children[J]. China Mod Med, 2017, 24(30): 157-159, 165. DOI:10.3969/j.issn.1674-4721.2017.30.052
[30]
胡丽娜. 儿童接种MMR的安全性及免疫学效果分析[J]. 河南医学研究, 2018, 27(20): 3707-3708.
Hu LN. Analysis of the safety and immunological effect of children's MMR vaccination[J]. Henan Med Res, 2018, 27(20): 3707-3708. DOI:10.3969/j.issn.1004-437X.2018.20.023
[31]
刘卫民, 何梅英, 卓菲. 国产麻疹-腮腺炎-风疹联合疫苗与麻疹疫苗的免疫效果评价[J]. 实用预防医学, 2010, 17(9): 1754-1755.
Liu WM, He MY, Zhuo F. Comparative study on immunogenicity of domestic measles-mumps-rubella combined vaccine and measles vaccine[J]. Pract Prev Med, 2010, 17(9): 1754-1755. DOI:10.3969/j.issn.1006-3110.2010.09.017
[32]
Henry O, Brzostek J, Czajka H, et al. One or two doses of live varicella virus-containing vaccines: Efficacy, persistence of immune responses, and safety six years after administration in healthy children during their second year of life[J]. Vaccine, 2018, 36(3): 381-387. DOI:10.1016/j.vaccine.2017.11.081
[33]
Knuf M, Zepp F, Helm K, et al. Antibody persistence for 3 years following two doses of tetravalent measles-mumps-rubella-varicella vaccine in healthy children[J]. Eur J Pediatr, 2012, 171(3): 463-470. DOI:10.1007/s00431-011-1569-4
[34]
Prymula R, Bergsaker MR, Esposito S, et al. Protection against varicella with two doses of combined measles-mumps-rubella-varicella vaccine versus one dose of monovalent varicella vaccine: a multicentre, observer-blind, randomised, controlled trial[J]. Lancet, 2014, 383(9925): 1313-1324. DOI:10.1016/s0140-6736(12)61461-5
[35]
Gillet Y, Steri GC, Behre U, et al. Immunogenicity and safety of measles-mumps-rubella-varicella (MMRV) vaccine followed by one dose of varicella vaccine in children aged 15 months-2 years or 2-6 years primed with measles-mumps-rubella (MMR) vaccine[J]. Vaccine, 2009, 27(3): 446-453. DOI:10.1016/j.vaccine.2008.10.064
[36]
邵茜, 朱梦蓉, 刘鹏, 等. 8月龄首剂接种国产麻疹腮腺炎风疹联合减毒活疫苗的安全性及免疫原性观察[J]. 预防医学情报杂志, 2016, 32(7): 742-746. DOI:CNKI:SUN:YFYX.0.2016-07-028.
Shao X, Zhu MR, Liu P, et al. Safety and immunogenicity of domestic combined live attenuated measles, mumps and rubella vaccine injected with 8-month infants at the first dose[J]. J Prev Med Inf, 2016, 32(7): 742-746. DOI:CNKI:SUN:YFYX.0.2016-07-028.
[37]
Lalwani S, Chatterjee S, Balasubramanian S, et al. Immunogenicity and safety of early vaccination with two doses of a combined measles-mumps-rubella-varicella vaccine in healthy Indian children from 9 months of age: a phase Ⅲ, randomised, non-inferiority trial[J]. BMJ Open, 2015, 5(9): e007202. DOI:10.1136/bmjopen-2014-007202
[38]
Cha SH, Shin SH, Lee TJ, et al. Immunogenicity and safety of a tetravalent measles-mumps-rubella-varicella vaccine: an open-labeled, randomized trial in healthy Korean children[J]. Clin Exp Vaccine Res, 2014, 3(1): 91-99. DOI:10.7774/cevr.2014.3.1.91
[39]
Cocchio S, Zanoni G, Opri R, et al. A postmarket safety comparison of 2 vaccination strategies for measles, mumps, rubella and varicella in Italy[J]. Hum Vaccin Immunother, 2016, 12(3): 651-654. DOI:10.1080/21645515.2015.1101198
[40]
Schink T, Holstiege J, Kowalzik F, et al. Risk of febrile convulsions after MMRV vaccination in comparison to MMR or MMR+V vaccination[J]. Vaccine, 2014, 32(6): 645-650. DOI:10.1016/j.vaccine.2013.12.011
[41]
徐宏基, 李微, 夏建华, 等. 国产冻干麻疹腮腺炎风疹联合减毒活疫苗的接种反应和免疫原性观察[J]. 中国生物制品学杂志, 2008, 21(12): 1111-1114.
Xu HJ, Li W, Xia JH, et al. Adverse reaction and immunogenicity induced by domestic freeze-dried live attenuated measles-mumps-rubella combined vaccine[J]. Chin J Biol, 2008, 21(12): 1111-1114. DOI:10.3969/j.issn.1004-5503.2008.12.023
[42]
Goh P, Lim FS, Han HH, et al. Safety and immunogenicity of early vaccination with two doses of tetravalent measles-mumps-rubella-varicella (MMRV) vaccine in healthy children from 9 months of age[J]. Infection, 2007, 35(5): 326-333. DOI:10.1007/s15010-007-6337-z
[43]
Lieberman JM, Williams WR, Miller JM, et al. The safety and immunogenicity of a quadrivalent measles, mumps, rubella and varicella vaccine in healthy children: A study of manufacturing consistency and persistence of antibody[J]. Pediatr Infect Dis J, 2006, 25(7): 615-622. DOI:10.1097/01.inf.0000220209.35074.0b
[44]
Knuf M, Habermehl P, Zepp F, et al. Immunogenicity and safety of two doses of tetravalent measles-mumps-rubella-varicella vaccine in healthy children[J]. Pediatr Infect Dis J, 2006, 25(1): 12-18. DOI:10.1097/01.inf.0000195626.35239.58
[45]
Nolan T, McIntyre P, Roberton D, et al. Reactogenicity and immunogenicity of a live attenuated tetravalent measles-mumps-rubella-varicella (MMRV) vaccine[J]. Vaccine, 2002, 21(3/4): 281-289. DOI:10.1016/S0264-410X(02)00459-0
[46]
Klein NP, Lewis E, Fireman B, et al. Safety of measles-containing vaccines in 1-year-old children[J]. Pediatrics, 2015, 135(2): e321-329. DOI:10.1542/peds.2014-1822
[47]
Jacobsen SJ, Ackerson BK, Sy LS, et al. Observational safety study of febrile convulsion following first dose MMRV vaccination in a managed care setting[J]. Vaccine, 2009, 27(34): 4656-4661. DOI:10.1016/j.vaccine.2009.05.056
[48]
Halperin SA, Ferrera G, Scheifele D, et al. Safety and immunogenicity of a measles-mumps-rubella-varicella vaccine given as a second dose in children up to six years of age[J]. Vaccine, 2009, 27(20): 2701-2706. DOI:10.1016/j.vaccine.2009.02.044
[49]
Dodd D. Benefits of combination vaccines: effective vaccination on a simplified schedule[J]. Am J Manag Care, 2003, 9 Suppl 1: S6-12.
[50]
Meyerhoff AS, Weniger BG, Jacobs RJ. Economic value to parents of reducing the pain and emotional distress of childhood vaccine injections[J]. Pediatr Infect Dis J, 2001, 20 Suppl 11: S57-62. DOI:10.1097/00006454-200111001-00009
[51]
Shono A, Kondo M. Mothers' preferences regarding new combination vaccines for their children in Japan, 2014[J]. Hum Vaccin Immunother, 2017, 13(4): 766-771. DOI:10.1080/21645515.2016.1255387
[52]
Decker MD. Principles of pediatric combination vaccines and practical issues related to use in clinical practice[J]. Pediatr Infect Dis J, 2001, 20 Suppl 11: S10-18. DOI:10.1097/00006454-200111001-00002
[53]
King GE, Hadler SC. Simultaneous administration of childhood vaccines: an important public health policy that is safe and efficacious[J]. Pediatr Infect Dis J, 1994, 13(5): 394-407. DOI:10.1097/00006454-199405000-00012
[54]
Centers for Disease Control and Prevention. Multiple Vaccinations at Once[EB/OL] (2020-08-14)[2020-09-01]. https://www.cdc.gov/vaccinesafety/concerns/multiple-vaccines-immunity.html.
[55]
Sugishita Y, Kurita J, Akagi T, et al. Determinants of vaccination coverage for the second dose of measles-rubella vaccine in Tokyo, Japan[J]. Tohoku J Exp Med, 2019, 249(4): 265-273. DOI:10.1620/tjem.249.265
[56]
Centers for Disease Control and Prevention. Combination Vaccines for Childhood Immunization. Combination vaccines for childhood immunization: recommendations of the Advisory Committee on Immunization Practices (ACIP), the American Academy of Pediatrics (AAP), and the American Academy of Family Physicians (AAFP)[J]. Pediatrics, 1999, 103(5 Pt 1): 1064-1077. DOI:10.1542/peds.103.5.1064
[57]
Freed GL, Cowan AE, Clark SJ, et al. Use of a new combined vaccine in pediatric practices[J]. Pediatrics, 2006, 118(2): e251-257. DOI:10.1542/peds.2006-0114
[58]
Pellissier JM, Coplan PM, Jackson LA, et al. The effect of additional shots on the vaccine administration process: results of a time-motion study in 2 settings[J]. Am J Manag Care, 2000, 6(9): 1038-1044. DOI:10.1016/S0140-6736(05)73446-2
[59]
刘卫民, 何梅英, 付丹凤, 等. 深圳市儿童麻腮风三联疫苗免疫的成本-效益分析[J]. 实用预防医学, 2009, 16(6): 1766-1768.
Liu WM, He MY, Fu DF, et al. Cost-benefit analysis of measles-mumps-rubella vaccine immunity among children in Shenzhen[J]. Pract Prev Med, 2009, 16(6): 1766-1768. DOI:10.3969/j.issn.1006-3110.2009.06.026
[60]
Hammerschmidt T, Bisanz H, Wutzler P. Universal mass vaccination against varicella in Germany using an MMRV combination vaccine with a two-dose schedule: an economic analysis[J]. Vaccine, 2007, 25(42): 7307-7312. DOI:10.1016/j.vaccine.2007.08.017
[61]
Zhou FJ, Shefer A, Wenger J, et al. Economic evaluation of the routine childhood immunization program in the United States, 2009[J]. Pediatrics, 2014, 133(4): 577-585. DOI:10.1542/peds.2013-0698
[62]
Rivière M, Tretiak R, Levinton C, et al. Economic benefits of a routine second dose of combined measles, mumps and rubella vaccine in Canada[J]. Can J Infect Dis, 1997, 8(5): 257-264. DOI:10.1155/1997/215175
[63]
Happe LE, Lunacsek OE, Marshall GS, et al. Combination vaccine use and vaccination quality in a managed care population[J]. Am J Manag Care, 2007, 13(9): 506-512. DOI:10.1097/ACM.0b013e31812f77b9
[64]
Dietz VJ, Stevenson J, Zell ER, et al. Potential impact on vaccination coverage levels by administering vaccines simultaneously and reducing dropout rates[J]. Arch Pediatr Adolesc Med, 1994, 148(9): 943-949. DOI:10.1001/archpedi.1994.02170090057008
[65]
Kongstvedt PR. The managed health care handbook, 4th ed[J]. The Nurse Practitioner, 2001, 26(12): 61. DOI:10.1097/00006205-200112000-00013
[66]
Kalies H, Grote V, Schmitt HJ, et al. Immunisation status of children in Germany: temporal trends and regional differences[J]. Eur J Pediatr, 2006, 165(1): 30-36. DOI:10.1007/s00431-005-1758-0
[67]
Zhu N, Zhang DY, Wang WL, et al. A novel coronavirus from patients with Pneumonia in China, 2019[J]. N Engl J Med, 2020, 382(8): 727-733. DOI:10.1056/NEJMoa2001017
[68]
World Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard[EB/OL]. (2020-01-10)[2020-09-01]. https://covid19.who.int.
[69]
World Health Organization. In WHO global pulse survey, 90% of countries report disruptions to essential health services since COVID-19 pandemic[EB/OL]. (2020-08-31)[2020-09-01]. https://www.who.int/news-room/detail/31-08-2020-in-who-global-pulse-survey-90-of-countries-report-disruptions-to-essential-health-services-since-covid-19-pandemic.
[70]
Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China[J]. N Engl J Med, 2020, 382(18): 1708-1720. DOI:10.1056/NEJMoa2002032
[71]
王琳, 白云骅, 方拴锋, 等. 新型冠状病毒肺炎流行期间免疫规划疫苗延迟接种安全性和有效性分析及接种建议(第一版)[J]. 中国儿童保健杂志, 2020, 28(3): 242-246, 260.
Wang L, Bai YH, Fang SF, et al. Recommendations for delayed immunization with national immunization program vaccines based on safety and efficacy analysis during epidemic of novel coronavirus pneumonia[J]. Chin J Child Health Care, 2020, 28(3): 242-246, 260. DOI:10.11852/zgetbjzz2020-0143
[72]
World Health Organization. Closing immunization gaps caused by COVID-19[EB/OL]. (2020-08-25)[2020-09-01]. https://technet-21.org/en/library/main/6558-closing-immunization-gaps-caused-by-covid-19.
[73]
World Health Organization. WHO and UNICEF warn of a decline in vaccinations during COVID-19[EB/OL]. (2020-07-15)[2020-09-01]. https://www.who.int/news-room/detail/15-07-2020-who-and-unicef-warn-of-a-decline-in-vaccinations-during-covid-19.
[74]
崔富强. 中国儿童用联合疫苗免疫策略的探讨[J]. 中国病毒病杂志, 2019, 9(3): 161-166.
Cui FQ. Consideration on the vaccination strategy of combined vaccine for children in China[J]. Chin J Viral Dis, 2019, 9(3): 161-166. DOI:10.16505/j.2095-0136.2019.0037
[75]
国家卫生和计划生育委员会. 国家免疫规划疫苗儿童免疫程序及说明(2016年版)[J]. 中国病毒病杂志, 2017, 7(2): 81-86.
National Health and Family Planning Commission. Immunization schedules and instructions for vaccines of the national immunization program (2016 version)[J]. Chin J Viral Dis, 2017, 7(2): 81-86. DOI:10.16505/j.2095-0136.2017.02.001
[76]
国家药品监督管理局. 中华人民共和国疫苗管理法[EB/OL]. (2019-07-02)[2020-09-01]. https://www.nmpa.gov.cn/xxgk/fgwj/flxzhfg/20190702121701506.html.
National Medical Products Administration. The law on vaccine management of the People's Republic of China[EB/OL]. (2019-07-02)[2020-09-01]. https://www.nmpa.gov.cn/xxgk/fgwj/flxzhfg/20190702121701506.html.
[77]
于振行, 罗红蓉, 范红, 等. 建国70年来我国疫苗技术与行业发展回顾与展望[J]. 中国医药, 2019, 14(7): 961-965.
Yu ZH, Luo HR, Fan H, et al. Review and future perspectives of vaccine technology and industry development in China in the 70 years after the founding of the People's Republic of China[J]. China Med, 2019, 14(7): 961-965. DOI:10.3760/j.issn.1673-4777.2019.07.001
[78]
国家药品监督管理局. 国产药品查询[EB/OL]. (2020-06-01)[2020-09-01]. http://app1.nmpa.gov.cn/data_nmpa/face3/dir.html.
National Medical Products Administration. Domestic drug query[EB/OL]. (2020-06-01)[2020-09-01]. http://app1.nmpa.gov.cn/data_nmpa/face3/dir.html.
[79]
杨晓明. 联合接种和联合疫苗研究进展[J]. 中华流行病学杂志, 2020, 41(1): 120-126.
Yang XM. A review of combined immunization: current research situation and its promising future[J]. Chin J Epidemiol, 2020, 41(1): 120-126. DOI:10.3760/cma.j.issn.0254-6450.2020.01.022
[80]
周祖木. 联合疫苗的发展策略[J]. 国外医学: 预防、诊断、治疗用生物制品分册, 2002, 25(4): 162-165.
Zhou ZM. Combination vaccine development strategy[J]. For Med Sci: Sect Biol Prophyl Diagn Ther, 2002, 25(4): 162-165. DOI:10.3760/cma.j.issn.1673-4211.2002.04.006
[81]
赵杨升, 孙青, 王琳琳, 等. 我国联合疫苗产业发展现状、问题及对策[J]. 中国医药工业杂志, 2018, 49(9): 1306-1312.
Zhao YS, Sun Q, Wang LL, et al. Analysis on the development trend and problems of combined vaccine industry in China[J]. Chin J Pharmaceut, 2018, 49(9): 1306-1312. DOI:10.16522/j.cnki.cjph.2018.09.016
[82]
卫生部. 扩大国家免疫规划实施方案[EB/OL]. (2007-12-29)[2020-09-01]. http://www.gov.cn/gzdt/2008-02/19/content_893572.htm.
Ministry of Health. Expanding national immunization planning implementation plan[EB/OL]. (2007-12-29)[2020-09-01]. http://www.gov.cn/gzdt/2008-02/19/content_893572.htm.
[83]
王文畅, 王华庆. 中国非免疫规划疫苗接种现状和影响因素浅析[J]. 中国疫苗和免疫, 2020, 26(1): 93-97.
Wang WC, Wang HQ. Status and influencing factors of vaccination with non-Expanded Program on Immunization vaccines in China[J]. Chin J Vaccin Immun, 2020, 26(1): 93-97.
[84]
张雪海. 浙江省适龄儿童家长二类疫苗接受度影响因素研究[D]. 杭州: 浙江大学, 2017.
Zhang XH. Research to the influential factors of acceptance of parents to the category Ⅱ-vaccines in Zhejiang Province[D]. Hangzhou: Zhejiang University, 2017.
[85]
郑登峰. 本科以上学历家长对儿童预防接种服务的知识、态度、行为及影响因素研究[D]. 北京: 中国疾病预防控制中心, 2012.
Zheng DF. A study on the knowledge, attitude, behavior and influencing factors of parents with a bachelor degree or above on child vaccination services[D]. Beijing: Chinese Center for Disease Control and Prevention, 2012.
[86]
谢春香. 延边地区住院儿童家长二类疫苗知信行现状分析[D]. 延吉: 延边大学, 2019.
Xie CX. Analysis to the kabp of hospitalized children's parents to the category Ⅱ vaccines in Yanbian aren[D]. Yanji: Yanbian University, 2019.
[87]
尹纯礼, 李晓军, 朱江, 等. 上海市宝山区预防接种门诊医护人员非免疫规划疫苗推荐意愿和影响因素[J]. 中国疫苗和免疫, 2020, 26(3): 314-318.
Yin CL, Li XJ, Zhu J, et al. Willingness to recommend non-Expanded Program on Immunization vaccines and factors influencing willingness among healthcare workers in vaccination clinics in Baoshan district of Shanghai[J]. Chin J Vaccin Immun, 2020, 26(3): 314-318.