Study on the relationship between hepatitis C virus infection and sharing injection equipment
sexual behavior among injecting drug users

ZHOU Feng１ 　MA Ze-en２ 　HU Wei３ 　FENG Zong-liang４ 　CHEN Kang-lin４
QIN Guang-ming５ 　SUN Qiao６ 　LIU Gang７ 　LIANG Shu８ 　HE Yi-xin８ 　LIU Shi-zhu９ 　RUAN Yu-hua９ 　SHAO Yi-ming９
１Peking Union Medical College Union School of Public Health Beijing 100021 China
Corresponding author 　RUAN Yu-hua National Center for Sexually Transmitted Disease and Acquired Immune Deficiency Syndrome Prevention and Control 　Chinese Center for Disease Control and Prevention Beijing 100050 China

Abstract 　Objective To study hepatitis C virus (HCV) transmission through different modes of sharing injection equipment and sexual behavior among injecting drug users (IDUs) in Liangshan of Sichuan province.

Methods 　A community-based survey was conducted to investigate past and current demographic data, injection equipment sharing patterns and sexual behavior of IDUs. Blood samples were also taken to test for HCV. The survey was conducted between Nov 8 and Nov 29, 2002. 379 subjects were screened through outreach recruitment and peer informing. SPS 11.5 was used for data analysis. Results 　HCV prevalence was 71.0% (269/379).

Needles or syringes sharing in the past three months and past syphilis infection were strongly associated with HCV transmission after univariate analysis using chi-square test. Trend analysis indicated that HCV infection rate increased along with the increase of needles or syringes sharing of rinse water and the number of peers sharing the equipments. Data from multivariate logistic regression showed that sharing of needles or syringes and history of syphilis infection were significantly associated with HCV transmission. No significant difference was found between HCV infection and sexual behavior after univariate analysis using chi-square test. Conclusion 　Further sero-epidemiological prospective cohort studies should be conducted to clarify the relationship between different modes of sharing injection equipment, sexual behavior and HCV infection.

Key words 　Injection drug user 　Sharing injection equipment 　Hepatitis virus 　Sexual behavior
国内外的研究资料表明，静脉吸毒，尤其是共用注射器具是吸毒人群感染艾滋病病毒(HIV)、丙型肝炎病毒(HCV)、乙型肝炎病毒(HBV)等传染病的主要危险因素。同时，吸毒人员中卖淫嫖娼现象严重，有研究资料表明的感染与性行为方式有关，但也有研究显示性行为并不是导致HIV传播的主要因素。

我国已经在静脉吸毒人员中进行了共用注射器具、性行为方式和HIV感染状况的流行病学调查，但并未对其内在的关系进行深入分析研究，且较少从社区中招募研究对象来开展调查。因此，本研究选择我国静脉吸毒情况较严重的四川省凉山州某地区，以社区为基础招募静脉吸毒人员来探讨静脉吸毒共用注射器具和性行为方式对HIV感染的影响。

对象与方法

调查方法：于年月在四川省凉山彝族自治州某地区开展本次调查。研究对象的访谈和采样均在西昌市皮肤病性病防治站内开展。访谈员为西昌市皮肤病性病防治站专业技术人员。在开展调查研究前，访谈员接受了有关研究项目的技术培训，包括研究方案和调查表填写、知情同意过程、艾滋病咨询和访谈技巧、隐私保护、调查的标准操作程序等。本研究从社区中直接招募研究对象，通过社区宣传将该项目信息传播到社区中，使吸毒人群知道该研究项目；通过种子介绍研究对象来参加项目；在开展知情同意过程中，建议参加者将项目信息传播到社区的吸毒人群中以便其他吸毒人员来参加。

研究对象：研究对象纳入的标准为周岁及以上的静脉吸毒者，能够和愿意提供书面知情同意书。

调查内容：吸毒人群的性别、出生时间、民族、文化程度、职业、收入、婚姻状况、居住情况、近个月静脉吸毒及共用注射器具方式和近个月性行为等有关的行为学特征。

HIV和梅毒感染检测：采用北京金豪制药有限公司检测试剂盒，一次酶联免疫吸附试验(ELISA)检测阳性者判为阳性。梅毒螺旋体初筛采用北京金豪制药有限公司生产的梅毒螺旋体诊断试剂盒(双抗原夹心法)，阳性标本用日本公司生产的梅毒螺旋体颗粒凝胶法(Chip)试剂进行确认，两次检测结果符合率为。

统计学分析：采用建立数据库，由两人分别录入数据后，进行一致性比较和修改错误录入的数据，直到两个数据库达到一致。有关静脉吸毒共用注射器具行为和性行为特征对HIV感染的影响采用趋势性检验。在单因素分析的基础上，进行回归多因素分析。统计分析采用软件。

结果

研究对象的一般情况：在社区招募了吸毒人群，按知情同意的原则操作，其中静脉吸毒者为合格的研究对象。男性人(人)，女性人(人)；年龄岁的占，汉族占，彝族等少数民族占，文化程度以高中以下为主占，有无职业；年收入低于元的占，的研究对象单身，已结婚，同居；居住情况以自己或与父母以外的人同住为主占，的研究对象与父母同住。

静脉吸毒共用注射器具方式同HIV感染的关系：静脉吸毒人群HIV感染率为。在单因素分析中，静脉吸毒人群近个月不同共用注射器具方式同HIV感染差异有统计学意义的变量是共用针头或注射器具(表)。

在静脉吸毒共用注射器具方式同HIV感染关系的趋势性检验中，有统计学意义的变量是共用注射器伙伴人数、共用针头或注射器和共用洗针头或注射器水的频率，其值分别为、。

说明随着共用注射器具伙伴人数的增加、共用针头或注射器和共用洗针头或注射器水的频率的增多，使HIV的感染率在增加。

静脉吸毒人群性行为方式同HIV感染的关系：通过对吸毒人群近个月不同性行为方式的HIV感染情况分析，未发现有统计学意义的变量，但是既往感染梅毒同HIV的感染有统计学意义；未见该人群中有同性恋现象发生(表)。

选择单因素分析中的共用吸毒方式变量，在分别控制这些变量后进行回归模型分析，分别观察既往感染梅毒是否是HIV感染的独立危险因素并对性行为方式与HIV感染的关系进行进一步分析，结果见表。
分析，进入模型有统计学意义的变量是共用针头或注射器，既往感染梅毒(表1)。

表1

静脉吸毒人群性行为方式与感染率(%)及单因素分析

<table>
<thead>
<tr>
<th>危险因素</th>
<th>受检人数</th>
<th>感染率</th>
<th>OR</th>
<th>95% CI</th>
<th>P值</th>
</tr>
</thead>
<tbody>
<tr>
<td>性伴人数</td>
<td>108</td>
<td>73.1</td>
<td>1.39</td>
<td>0.77 - 2.30</td>
<td>0.20</td>
</tr>
<tr>
<td>近期有新性伴</td>
<td>58</td>
<td>81.0</td>
<td>2.00</td>
<td>0.98 - 4.57</td>
<td>0.099</td>
</tr>
</tbody>
</table>

表2

静脉吸毒人群共用注射器具方式与感染率(%)及单因素分析

<table>
<thead>
<tr>
<th>共用器具</th>
<th>受检人数</th>
<th>感染率</th>
<th>OR</th>
<th>95% CI</th>
<th>P值</th>
</tr>
</thead>
<tbody>
<tr>
<td>共用针头</td>
<td>108</td>
<td>73.1</td>
<td>1.39</td>
<td>0.77 - 2.30</td>
<td>0.20</td>
</tr>
<tr>
<td>共用洗针头或注射器水</td>
<td>58</td>
<td>81.0</td>
<td>2.00</td>
<td>0.98 - 4.57</td>
<td>0.099</td>
</tr>
</tbody>
</table>

表3

HCV阳性病人HCV、HBV和HIV感染情况

<table>
<thead>
<tr>
<th>病例</th>
<th>HCV</th>
<th>HBV</th>
<th>HIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

表4

HCV阳性病人HCV、HBV和HIV感染情况

<table>
<thead>
<tr>
<th>危险因素</th>
<th>受检人数</th>
<th>感染率</th>
<th>OR</th>
<th>95% CI</th>
<th>P值</th>
</tr>
</thead>
<tbody>
<tr>
<td>每周一次</td>
<td>108</td>
<td>73.1</td>
<td>1.39</td>
<td>0.77 - 2.30</td>
<td>0.20</td>
</tr>
<tr>
<td>每月一次</td>
<td>58</td>
<td>81.0</td>
<td>2.00</td>
<td>0.98 - 4.57</td>
<td>0.099</td>
</tr>
</tbody>
</table>

讨论

静脉吸毒已被国内外的许多研究证实是经血传播的各种传染病的主要危险因素，且主要由于共用注射器而造成感染。国外学者对静脉吸毒者进行的队列研究发现，共用针头和洗针头与感染率有关，但既往研究中未发现由注射器后装入毒品与感染的关系分析，提示其为主要危险因素。静脉吸毒已被国内外的许多研究证实是经血传播的各种传染病的主要危险因素。国内研究显示，静脉吸毒者感染的多因素回归分析结果，提示其为主要危险因素。研究结果显示，在多因素分析中共用针头和注射器、既往感染梅毒等与感染率有关。
显相关性

通过性行为的传播。

可能通过性途径传播或梅毒感染与性伴数、

性伴数与

感染的关系，以便在对静脉吸毒人群开展健康

的感染率可能达

的感染率高于未感染梅毒的

。本次研究所获得的均为近半年来的

的感染率可能达

个、肛交及口交与

的感染率可能达

的感染率可能达