·临床流行病学•

中国人脂联素基因 45T/G 与 276G/T 多态性 与 2 型糖尿病相关性研究的 Meta 分析

徐明彤 陈筱潮 金莉子 陈维清

【摘要】目的 对中国人脂联素基因 45T/G 和 276G/T 多态性与 2 型糖尿病相关性的研究进行 Meta 分析。方法 通过文献检索收集 2007 年 12 月以前完成或发表的中国人脂联素基因 45T/G 和 276G/T 多态性与 2 型糖尿病相关性的病例对照研究,剔除不符合要求的文献,以漏斗图检验人选文献的偏倚,并根据各人选文献结果的同质性检验结果进行数据合并,计算总 OR 值,Meta 分析采用 Review Manager 4.2版软件。结果 共 23 篇文献符合条件纳入研究,其中涉及 45T/G 多态性文献 20 篇,涉及 276G/T 多态性文献 9 篇,人选文献无明显偏倚,各文献同质性检验显示有关两个位点 45T/G ($\chi^2=119.8$,P<0.001)、276G/T($\chi^2=31.0$,P=0.001)等位基因分布情况的文献之间均存在显著异质性。 Meta 分析显示 45G 等位基因携带者增加 2 型糖尿病的易感性(OR=1.38,95% CI:1.04~1.84,P=0.03),276G/T 基因多态性与 2 型糖尿病易感性无明显相关性(OR=0.83,95% CI:0.61~1.13,P=0.23)。 结论 脂联素基因 45T/G 多态性与中国人 2 型糖尿病易感性相关,45G 等位基因可能是 2 型糖尿病易感生因,276G/T 基因多态性与 2 型糖尿病无明显相关性。

【关键词】 2型糖尿病; 脂联素; 基因多态性; 中国人; Meta 分析

A Meta-analysis on the association between adiponectin gene 45T/G/276G/T polymorphisms and type 2 diabetes in Chinese population XU Ming-tong*, CHEN Xiao-chao, JIN Li-zi, CHEN Wei-qing. *Department of Endocrinology the Second Affiliated Hospital Sun Yat-sen University, Guangzhou 510120, China

[Abstract] Objective Association between the 45T/G and 276G/T single nucleotide polymorphisms of adiponectin gene and the occurrence of type 2 diabetes in Chinese population was studied. Methods 20 studies consisting 22 case-control comparisons about 45T/G polymorphism and nine case-control studies about 276G/T polymorphism that were based on our inclusion criterion and available in the literature were reviewed. Results Results from Meta-analysis demonstrated a large heterogeneity among the studies both on 45T/G and 276G/T polymorphisms and a significant association was observed between 45T/G polymorphism at exon 2 of the adiponectin gene and type 2 diabetes among the Chinese population. 45G allele appeared to be one of the genetic risk factors for susceptibility to type 2 diabetes with a random effects odds ratio (OR) of 1.43 (95 % CI: 1.17-1.75), and the G allele carriers were more susceptible to the disease with an OR of 1.38 (95% CI: 1.04-1.84). Results from Meta-analysis, however, showed no association between the 276G/T polymorphism and type 2 diabetes in the Chinese population, while the random effects OR of the allele 276T to susceptibility of disease was 0.83 (95 % CI: 0.61-1.13). Conclusion The current paper on Meta-analysis demonstrated a correlation between the 45T/G single nucleotide polymorphism and the occurrence of type 2 diabetes in Chinese population, which was different from the findings that such an association with 276G/T polymorphism could not be demonstrated in the same ethnic population.

[Key words] Type 2 diabetes; Adiponectin; Gene polymorphism; Chinese; Meta-analysis

脂联素是脂肪组织分泌的活性蛋白,在血浆中 含量丰富,对能量代谢与胰岛素敏感性等产生重要

基金项目:广东省科技发展计划基金资助项目 (2005B3370321);森海市科技局基金资助项目(PB20051015)

作者单位:510120 广州,中山大学附属第二医院内分泌内科(徐明彤);中山大学附属第五医院心内科(陈筱潮、金莉子);中山大学公共卫生学院流行病学教研室(陈维清)

影响。研究显示,在肥胖个体中血浆脂联素水平明显下降,血浆脂联素水平与胰岛素敏感性呈显著正相关,并伴随体重增加糖耐量恶化而明显下降,此外,动物模型研究显示,脂联素治疗增加机体胰岛素的敏感性,说明脂联素在胰岛素的信号传递和敏感性的调节方面起重要作用[1-3]。脂联素基因由3个

外显子和 2 个内含子组成,全长17 kb,迄今为止已发现十余个位点单核苷酸基因多态性并在不同的人群中得到证实,其中,多项有关欧洲和日本人群的研究显示,外显子 2 第 45 位点 T/G变异和内含子 3 第 276 位点G/T变异与糖尿病、肥胖以及其他代谢综合征的特点密切相关^[4,5],近期有关中国人群的部分研究也发现此两个位点的基因多态性与国人 2 型糖尿病的发病显著相关,但另一部分研究结果则不一致。为此,本研究采用 Meta 分析的方法,对目前有关国人的研究资料进行汇总分析,以期更有效地评价两者之间的关系。

资料与方法

- 1. 研究对象:通过收集公开发表的有关中国人脂联素基因 45T/G 和 276G/T 多态性与 2 型糖尿病关系的病例对照研究资料,以其中的糖尿病为研究病例,以血糖正常的健康人为对照组,通过分子生物学方法检测研究病例和对照人群中脂联素基因 45、276 位点等位基因及基因型的分布频率,研究脂联素基因多态性与 2 型糖尿病的相关性。
- 2. 资料来源:以2型糖尿病、脂联素、基因多态性为主题词,联合检索2007年12月以前的中国生物医学文献数据库和中国学术期刊全文数据库(http://www.cnki.net)获得全部中文文献,并检索同期 Medline 在外文期刊发表的中国人资料,此外,对万方资料库博士学位和硕士学位论文(http://www.wanfangdata/CDDB/CDDBFT/)进行检索,将未公开发表的硕士、博士学位论文资料同时纳入本研究范围。为避免上述电子数据库未收录和未发表的文献资料,还对国内一些重要的学术期刊以及国内一些大型学术会议的论文汇编进行了手工检索。
- 3.纳人标准及研究质量控制:由2名临床医师和1名流行病学工作者共同对获得的文献进行质量评价并取得一致意见:①研究对象均为中国人(包含香港、台湾地区),民族不限;②均为独立的研究,同一组资料重复报道者,取其资料最完整的文献;③各文献研究方法、诊断标准以及对照组人群的选择标准相似;④符合 Hardy-Weinberg(H-W)遗传平衡定律。
- 4. 统计学分析:①对所选择的研究基因型分布进行H-W遗传平衡检验,要求符合遗传平衡规律;②应用漏斗图初步分析纳人文献是否存在明显的偏倚;③计算各研究等位基因频率、OR值及其95% CI;④以 q 检验对各研究的结果进行一致性检

验,并根据检验结果选用相应的数据合并方法,若各研究间无显著异质性,则采用 Peto Mantel-Haenszel 固定效应模型进行数据合并,若结果间存在显著异质性,则采用校正后的 Dersimonian-Laird 随机效应模型法(D-L法)进行数据合并,计算总 OR 值。采用 Meta 分析软件包 Review Manager 4.2进行数据统计与分析,采用双侧检验,显著性水准为0.05。

结 果

- 1. 人选文献基本情况: 共23项研究纳入本研 究,其中16项为公开发表的研究[6-21],7项为未公开 发表的博士或硕士学位论文[22-28],所有人选文献中 2型糖尿病的诊断均以 WHO 专家委员会报告 (1999年)中的标准为依据。20 项研究共 22 组病例 对照组涉及45T/G位点多态性,累计2型糖尿病患 者 1455 例,健康对照人群 1117 例。22 组病例对照 组中,13 项以汉族人群为研究对象,5 项研究在汉族 人群聚居城市进行,但对研究对象的民族属性未加 说明,4项以少数民族人群为研究对象(新疆维吾尔 族2项、云南白族1项、广西壮族1项)(表1)。在 22 组病例对照研究的基因型分析研究中,2 组研究 采用PCR-SSCP技术,并均进行 PCR 产物 DNA 序列 分析^[9,13];2组研究采用荧光定量 PCR 技术^[11,12]; 其余 18 组研究均采用PCR-RFLP法进行基因型分 析,部分研究同时采用 DNA 序列测定核实。9 项研 究涉及276G/T位点,累计2型糖尿病患者834例, 健康对照人群 950 例,其中 5 项以汉族人群为研究 对象,3项研究在汉族人群聚居城市进行,但研究对 象的民族特性未描述,1项以新疆维吾尔族人群为 研究对象(表 2)。9 项研究的基因型分析中、1 项研 究采用PCR-SSCP及序列测定技术[18],1 项研究采 用荧光定量 PCR 技术[11],其余 7 项研究均采用 PCR-RFLP技术。
- 2.人选文献的异质性评估与发表偏倚评估:异质性检验显示,45T/G 位点基因多态性人选研究 $\chi^2=119.8,P<0.001;276G/T位点基因多态性人选研究 <math>\chi^2=31.0,P=0.001$ 。按照 $\alpha=0.05$ 水准认为各研究结果之间存在显著异质性。漏斗图显示无明显发表偏倚(图 1)。
- 3. 随机效应模型数据合并:根据异质性检验结果,二者均采用采用校正后的D-L法进行数据合并和计算合并 OR 值。图 2 为 45G 等位基因携带者(45G/G+45T/G)与 45T 纯合子比较的森林图,显

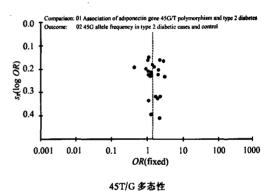

示合并后总 OR=1.38 (95% $CI:1.04\sim1.84$, P=0.03), 亚组研究显示汉族人群 OR=1.19 (95% $CI:0.85\sim1.65$, P=0.32)、汉族聚居城市人群 OR=2.68 (95% $CI:1.18\sim6.13$, P=0.02)、少数民族人群 OR=1.02 (95% $CI:0.68\sim1.54$, OR=0.93)。图 3为 276T 等位基因携带者 (276T/T+276G/T) 与 276G 纯合子比较的森林图,显示合并后总 OR=0.83 (95% OR=0.94 (95% OR=0.83)。

表1 人选文献一般情况及 45T/G 等位基因频率 与基因型分布特点

纳人	年份	地区	组别	45 T/	G 基因	型分布		基因 (%)
文献	, 100	民族	(n)	TT	TG	GG	T	G
[6]	2004	江苏	DM (78)	8	46	24	39.7	60.3
			Ctrl (85)	39	35	11	66.5	33.5
[7]	2004	天津	DM (92)	52	32	8	73.9	26.1
		汉	Ctrl(122)	64	56	2	75.4	24.6
[8]	2004	上海	DM(195)	104	71	20	71.5	28.5
		汉	Ctrl(187)	98	74	15	72.2	27.8
[9]	2005	安徽	DM(143)	56	68	19	62.9	37.1
		汉	Ctrl(112)	67	40	5	77.7	22.3
[10]	2006	北京	DM(195)	103	69	23	70.5	29.5
			Ctrl(139)	78	57	4	76.6	23.4
[11]	2007	山东	DM(138)	90	36	12	78.3	21.7
		汉	Ctrl(132)	48	64	20	60.6	39.4
[12]	2007	江苏	DM(165)	71	82	12	67.9	32.1
			Ctrl(40)	28	10	2	82.5	17.5
[13]	2007	河南	DM(168)	20	94	54	39.9	60.1
			Ctrl(150)	68	60	22	65.3	34.7
[14]	2007	黑龙江	DM(180)	89	79	12	71.4	28.6
F 2		汉	Ctrl(286)	152	114	20	73.1	26.9
[15]	2007	广东	DM(200)	80	92	28	63.0	37.0
5		汉	Ctrl(200)	122	72	6	79.0	21.0
[16]	2007	宁夏	DM(100)	39	48	13	63.0	37.0
F 4 = 3		汉	Ctrl(101)	58	40	3	77.0	23.0
[17]	2007	新疆	DM(57)	36	19	2	79.8	20.2
F7		维吾尔	Ctrl(94)	75	16	3	88.3	11.7
[22]	2005	天津	DM(40)	16	11	13	53.8	46.4
[aa]		汉	Ctrl(21)	10	10	1	71.4	28.6
[23]	2005	广西	DM(97)	55	26	16	70.1	29.9
[00]	****	壮一	Ctrl(98)	53	41	4	75.0	25.0
[23]	2005	广西	DM(115)	53	46	16	66.1	33.9
[04]	****	汉	Ctrl(95)	46	44	5	71.6	28.4
[24]	2005	柯北	DM(104)	56	36	12	71.2	28.8
[10]	2007	केट सम	Ctrl(90)	48	38	4	74.4	25.6
[19]	2006	新疆	DM(120)	67	36	17	70.8	29.2
[26]	2006	维吾尔	Ctrl(120)	60	45	15	68.7	31.3
[·20]	2006	内蒙古 汉	DM(50)	21	16	13	58.0	42.0
[27]	2006	汉 云南	Ctrl(40) DM(40)	19 21	18 16	3 3	70.0 72.5	30.0 27.5
[2/]	2000							
[27]	2006	白 天津	Ctrl(30)	18 69	10 44	2 9	76.7 74.5	23.3 25.5
[2/]	2000	大净 汉	DM(122) Ctrl(122)	64	56	2	75.4	24.6
[28]	2006	山东	DM(76)	44	25	7	74.3	25.7
[20]	2000	汉	Ctrl(35)	19	15	1	75.7	24.3
[29]	2007	湖南	DM(255)	126	115	14	72.0	28.0
[]	2007	汉	Ctrl(120)	76	40	4	77.5	22.5
			CHI(120)				11.5	<u> </u>

表2 人选文献一般情况及 276G/T 等位基因频率 与基因型分布特点

纳人	文献 年份	地区 组别 民族 (n)		276G/T 基因型分布			等位基因 频率(%)	
文献			GG	GT	TT	G	T	
[8]	2004	上海	DM(191)	104	71	16	73.0	27.0
		汉	Ctrl(186)	100	73	13	73.4	26.6
[6]	2004	江苏	DM(78)	32	41	5	67.3	32.7
			Ctrl(85)	26	46	13	57.6	42.4
[18]	2005	安徽	DM(276)	164	101	11	<i>7</i> 7. <i>7</i>	22.3
		汉	Ctrl(141)	69	59	13	69.9	30.1
[19]	2006	新疆	DM(120)	83	29	8	81.3	18.7
		维吾尔	Ctrl(120)	66	45	9	73.8	26.2
[20]	2006	内蒙古	DM(50)	26	18	6	70.0	30.0
		汉	Ctrl(40)	20	15	5	68.8	31.3
[20]	2007	山西	DM(134)	90	3 9	5	81.7	18.3
		汉	Ctrl(76)	35	31	10	66.4	33.6
[21]	2007	台灣	DM(439)	191	206	42	67.0	33.0
			Ctrl(973)	499	408	66	72.3	27.7
[25]	2007	山东	DM(198)	44	93	61	45.7	54.3
			Ctrl(98)	18	20	60	28.6	72.4
[11]	2007	山东	DM(138)	56	76	6	68.1	31.9
		汉	Ctrl(132)	68	56	8	72.7	27.3

cration of adiponectin gene 276T/G polymorphism and type 2 diabete

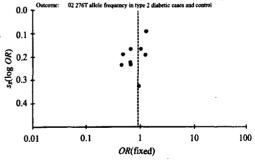


图1 脂联素基因多态性与2型糖尿病相关性 人选研究漏斗图

276G/T 多态性

讨论

脂联素基因位于人体第 3 号染色体 3q27 区,该 区域与代谢综合征和 2 型糖尿病密切相关。迄今为 止,在不同的人群中均发现该基因存在 10 个以上位

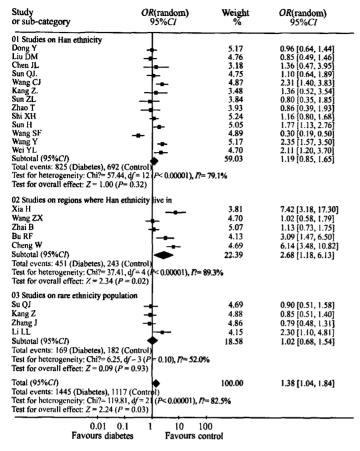


图2 脂联素 45T/G 基因多态性与 2 型糖尿病相关性研究 Meta 分析森林图

or sub-category	OR (random) 95%CI	Weight %	OR(random) 95%CI	
11 Studies on Han ethnicity		·		
Dong Y	_+	12.66	0.97 [0.65, 1.46]	
Ru Y		12.62	0.65 [0.44, 0.98]	
Sun ZL		7.47	0.92 [0.40, 2.12]	
Sun YZ		10.35	0.42 [0.23, 0.74]	
Wang SF Subtotal (95% <i>Cl</i>)		11.62 54.72	1.56 [0.96, 2.52] 0.83 [0.54, 1.27]	
Fotal events: 349 (Diabetes), 28	2 (Control)	34.72	0.83 [0.34, 1.27]	
Test for heterogeneity:Chi?=13.		71 20/		
Test for neterogeneity. Cnr. = 13. Test for overall effect: $Z \approx 0.86$		/1.370		
iest for overall effect. 2 ~ 0.80	(F = 0.39)			
22 Studies on regions where Ha	n ethnicity live in			
Xia H	~ ` = +	9.50	0.63 [0.33, 1.21]	
Yang WS	 -	14.87	1.37 [1.09, 1.71]	
Zhang HX		9.92	0.79 [0.43, 1.45]	
Subtotal (95%CI)	-	34.29	0.94 [0.56, 1.59]	
	2.00	- 1127	[,]	
ioiai events: 44x (Litabetes), 6 l				
Total events: 448 (Diabetes), 61		70.8%		
Test for heterogeneity: Chi?-6.	.85, $df = 2 (P = 0.03), P = 1$	70.8%		
Test for heterogeneity: $Chi? - 6$. Test for overall effect: $Z = 0.22$.85, $df = 2 (P = 0.03), P = 0.03$	70.8%		
Test for heterogeneity: Chi? – 6. Test for overall effect: $Z = 0.22$ 33 Study on rare ethnicity popu	.85, $df = 2 (P = 0.03), P = 0.03$			
Test for heterogeneity: $Chi? - 6$. Test for overall effect: $Z = 0.22$. 3 Study on rare ethnicity populishing J	.85, $df = 2 (P = 0.03), P = 0.03$	10.99	0.54 [0.32, 0.92]	
Test for heterogeneity: Chi?- 6. Test for overall effect: Z = 0.22 Study on rare ethnicity populy and J Subtotal (95%CI)	85, df = 2 ($P = 0.03$), $R = 0.03$), $R = 0.03$)		0.54 [0.32, 0.92] 0.54 [0.32, 0.92]	
Icst for heterogeneity: Chi?- 6. Test for overall effect: Z = 0.22 Study on rare ethnicity popu Zhang J Subtotal (95%CI) Total events: 37 (Diabetes), 54	85, $df = 2$ ($P = 0.03$), $R = 0.03$), $R = 0.03$) lation (Control)	10.99		
Test for heterogeneity: Chi?- 6. Test for overall effect: Z = 0.22 Study on rare ethnicity popu Shang J Subtotal (95%CI) Total events: 37 (Diabetes), 54 Test for heterogeneity: not appl.	85, df = 2 (P = 0.03), R = (P	10.99		
Icst for heterogeneity: Chi?- 6. Test for overall effect: Z = 0.22 Study on rare ethnicity popu Zhang J Subtotal (95%CI) Total events: 37 (Diabetes), 54	85, df = 2 (P = 0.03), R = (P	10.99		
Test for heterogeneity: Chi^2 - 6 Test for overall effect: $Z = 0.22$ 0.3 Study on rare ethnicity poputhang J Subtotal (95%CI) Total events: 37 (Diabetes), 54 Test for heterogeneity: not applete for overall effect: $Z = 2.25$	85, df = 2 (P = 0.03), R = (P	10.99 10.99	0.54 [0.32, 0.92]	
Test for heterogeneity: Chi^2 - 6 Test for overall effect: $Z = 0.22$ 0.3 Study on rare ethnicity popuzhang J Subtotal (95%CI) Total events: 37 (Diabetes), 54 Test for heterogeneity: not appletes for overall effect: $Z = 2.25$ Total (95%CI)	85, df = 2 (P = 0.03), P = (P = 0.83) lation (Control) icable (P = 0.02)	10.99		
Test for heterogeneity: Chi^2 -6 [test for overall effect: $Z = 0.22$] Study on rare ethnicity populations of $Z = 0.22$] Subtotal (95%CI) [Total events: 37 (Diabetes), 54 [Test for heterogeneity: not appliest for overall effect: $Z = 2.25$ [Total (95%CI) [Total events: 834 (Diabetes), 95 [Total events:	85, df = 2 (P = 0.03), R = (P = 0.83) lation (Control) cable (P = 0.02)	10.99 10.99	0.54 [0.32, 0.92]	
Test for heterogeneity: Chi^2 -6 Test for overall effect: $Z = 0.22$ 33 Study on rare ethnicity popu 2hang J Subtotal (95%CJ) Test for heterogeneity: not apple Test for heterogeneity: not apple Test for overall effect: $Z = 2.25$ Total (95%CJ) Total events: 834 (Diabetes), 94 Total events: 834 (Diabetes), 95 Total events: 834 (Diabetes), 95 Total events: 834 (Diabetes), 95 Test for heterogeneity: $\text{Chi}^2 = 30.9$	85, df = 2 (P = 0.03), P = 1 (P = 0.83) lation (Control) icable (P = 0.02) i0 (Control) 6, df = 8 (P = 0.0001), P = 7	10.99 10.99	0.54 [0.32, 0.92]	
Test for heterogeneity: Chi^2 -6 Test for overall effect: $Z = 0.22$ 33 Study on rare ethnicity popu 2hang J Subtotal (95%CJ) Test for heterogeneity: not apple Test for heterogeneity: not apple Test for overall effect: $Z = 2.25$ Total (95%CJ) Total events: 834 (Diabetes), 94 Total events: 834 (Diabetes), 95 Total events: 834 (Diabetes), 95 Total events: 834 (Diabetes), 95 Test for heterogeneity: $\text{Chi}^2 = 30.9$	85, df = 2 (P = 0.03), P = 1 (P = 0.83) lation (Control) icable (P = 0.02) i0 (Control) 6, df = 8 (P = 0.0001), P = 7	10.99 10.99	0.54 [0.32, 0.92]	
Test for heterogeneity: Chi^2 -6 [test for overall effect: $Z = 0.22$] Study on rare ethnicity populations of $Z = 0.22$] Subtotal (95%CI) [Total events: 37 (Diabetes), 54 [Test for heterogeneity: not appliest for overall effect: $Z = 2.25$ [Total (95%CI) [Total events: 834 (Diabetes), 95 [Total events:	85, df = 2 (P = 0.03), P = 1 (P = 0.83) lation (Control) icable (P = 0.02) i0 (Control) 6, df = 8 (P = 0.0001), P = 7	10.99 10.99	0.54 [0.32, 0.92]	

图3 脂联素 276G/T 基因多态性与 2 型糖尿病相关性研究 Meta 分析森林图

点的单核苷酸多态性,本研究在人 选的有关第 2 外显子 45T/G 多态 性与中国人 2 型糖尿病相关性的 22 个病例对照比较中.8 项研究报 告该位点基因多态性与2型糖尿病 密切相关, Meta 分析的总体结果显 示,等位基因 45G 显著增加 2 型糖 尿病的易感性。在 Sun 等[29] 对香 港中国人一项长达5年的前瞻性队 列研究中,也显示出类似的结论, 45G 等 位 基 因 携 带 者 (45G/G+ 45T/G)较 45T/T 纯合子进展为 2 型糖尿病的风险明显增加,与其他 两项前瞻性研究(STOP-NIDDM 和 DESIR)的 Meta 分析,结果也相一 致。该位点基因多态性增加2型糖 尿病易感性的机制目前尚未完全明 确,但多数相关的研究提示,该位点 基因多态性影响脂联素基因的转录 活性,降低血浆脂联素的浓度。在 本研究入选的文献中, Li 等[17] 对新 疆维吾尔人群的观察发现,45G等 位基因携带者血浆脂联素水平明显 降低,并与胰岛素抵抗密切相关。

在有关第 3 内含子 276G/T 多 态性的研究中,尽管有2项报告显 示该基因多态性位点与2型糖尿病 密切相关,但入选的9项研究汇总 分析并不显示其与糖尿病易感性的 关系。有关 45T/G 和 276G/T 这两 个多态性位点的研究显示,在包括 日本[4]、韩国[30]以及高加索人群[31] 中均显示两者之间存在连锁不平 衡,而在本研究人选的文献中,同样 也有研究报道两者之间存在完全连 锁不平衡关系[8]。理论上而言,在 同一种族中此二者与糖尿病易感性 的关系应该一致或基本接近,而本 研究的结果却显示二者之间存在较 大的差异。这种差异的原因,可能 与人群遗传背景的差异、样本量大 小、人选对象人选标准、年龄和性别 构成、是否具有糖尿病家族史等 相关。

Meta 分析的目的在于通过合并同类研究,以增 加统计效率从而得到更符合实际的结果,但也无可 避免地引入其他混杂因素,例如阳性结果的研究报 告相对容易发表而导致的发表偏倚、不同研究之间 结果的不同质性等。在本研究中,有许多项阴性结 果的研究纳入分析,所有纳入研究的漏斗图显示对 称形态,提示并不存在显著的发表偏倚。在研究方 法上,尽管本研究纳入的文献均采用了合适的方法 对基因型进行分析,但个体研究之间也存在一定的 差异,而在采用 PCR-RFLP 的大部分个体研究中也 存在是否对最终产物进行序列测定验证的差异,在 对 Meta 分析的总体结果进行分析时这种差异的混 杂也是需要考虑的因素。此外,由于我国是一个多 民族多地区国家,人群之间存在相对较大的遗传背 景差异:部分入选文献中病例对照组之间主要特征 未完全匹配等因素,也可能是不同研究间同质性较 差的重要原因之一。

参 考 文 献

- Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem., 1996,271:10697-10703.
- [2] Weyer C, Funahashi T, Tanaka S, et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab, 2001, 86:1930-1935.
- [3] Yang WS, Lee WJ, Funahashi T, et al. Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin. J Clin Endocrinol Metab, 2001, 86:3815-3819.
- [4] Hara K, Boutin P, Mori Y, et al. Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population. Diabetes, 2002, 51:536-540.
- [5] Vasseur F, Helbecque N, Dina C, et al. Single-nucleotide polymorphism haplotypes in both proximal promoter and exon 3 of the APM1 gene modulate adipocyte-secreted adiponectin hormone levels and contribute to the genetic risk for type 2 diabetes in French Caucasians. Hum Mol Genet, 2002, 11:2607-2614.
- [6] 夏晖,莫永珍,卞茸文,等.中国人脂联素基因单核苷酸多态性 与2型糖尿病的相关性.中华内分泌代谢杂志,2004,20:236-237.
- [7] 刘德敏,斯立忠,于德民,等.2 型糖尿病患者中脂联素基因多 态性的研究.中华糖尿病杂志.2004.12:397-398.
- [8] 董艳,李果,骆天红,等. 脂联素基因多态性与 2 型糖尿病的关系,上海第二医科大学学报,2004,24;1001-1009.
- [9] 王长江,王佑民,汝颖,等.脂联素基因第45位点单核苷酸多态性与肥胖及胰岛紊抵抗的相关性.中华糖尿病杂志,2005,13:324-325.
- [10] 觀冰,叶玲,刘建伟,等.北京社区人群脂联素和过氧化物酶增殖物活化受体基因多态性及其交互作用与2型糖尿病的关系. 中国临床康复,2006,10;28-31.
- [11] 王淑芳,赵家军,姜强,等.脂联素基因多态性与2型糖尿病相 关性研究.中华内分泌代谢杂志,2007,23:51-54.

- [12] 卜瑞芳,吴文君,邓振霞,等.脂联素基因多态性和血清脂联素 水平与2型糖尿病的相关性研究.医学研究生学报,2007,20 (3):285-289.
- [13] 程伟,易意智,麻献微.豫南地区 2 型糖尿病患者脂联素基因 45 位点多态性分布.郑州大学学报(医学版),2007,42(6): 1145-1148
- [14] 史晓红,金锋,孙亮,等.脂联素基因 SNP+45(T/G)单核苷酸 多态性与2型糖尿病的关系.中国组织工程研究与临床康复, 2007.11.4941.4943.
- [15] 王燕,何凌,黄春苓,等,广东汉族人群脂联素基因多态性与2 型糖尿病相关性研究,热带医学杂志,2007,7;651-653.
- [16] 魏颖丽,霍正浩,赵巍,等.我国西部人群脂联素基因+45 位点 多态性与肥胖、胰岛紊抵抗及2型糖尿病的相关性.中国糖尿 病杂志,2007,15:583-585.
- [17] Li LL, Kang XL, Ran XJ, et al. Associations between 45T/G polymorphism of the adiponectin gene and plasma adiponectin levels with type 2 diabetes. Clin Exp Pharmacol Physiol, 2007, 34 (12):1287-1290.
- [18] 汝颖,马猛,马腾,等. 脂联素基因 SNP276 多态性与 2 型糖尿 病易感性及胰岛素敏感性的关联. 中华医学遗传学杂志,2005, 22:698-701.
- [19] 张君,王燕,袁红玲,等.脂联素基因单核苷酸多态性(SNP276) 与新疆地区维吾尔族2型糖尿病相关性研究.农星医学,2006, 28:401-404
- [20] 孙英姿,郭志新. 脂联素基因 SNP276 多态性与 2 型糖尿病的 关系, 山西医药杂志, 2007, 36:661-663.
- [21] Yang WS, Yang YC, Chen CL, et al. Adiponectin SNP 276 is associated with obesity, the metabolic syndrome, and diabetes in the elderly. Am J Clin Nutr, 2007, 86:509-513.
- [22] 陈洁莉,邱明才,樊继援,等.脂联素及其基因单链核苷酸多态性在正常糖耐量、糖耐量受损和2型糖尿病患者的作用研究. 天津医科大学,2005:48-53.
- [23] 苏庆建,陈青云.脂联素基因外显子 2 多态性与糖尿病及相关 危险因素的关联性研究,广西医科大学,2005;14-21,
- [24] 王振贤,王战建. 脂联素基因多态性及其血清水平与不同糖耐量人群的相关性研究. 河北医科大学,2005:27-31.
- [25] 张红霞,李茵茵.脂联素基因多态性与糖尿病及其大血管病变的关系.山东大学,2007;14-17.
- [26] 孙志连,李彩粹. 脂联寮基因多态性与2型糖尿病及胰岛寮抵抗相关因素研究. 内蒙古医学院, 2006:5-10.
- [27] 康庄,于德民.白族2型糖尿病与脂联素基因多态性的相关性研究.天津医科大学,2006:17-26.
- [28] 赵涛,段文若.脂联素基因多态性及脂联素水平与糖尿病视网膜病变关系的研究.泰山医学院,2006;17-18.
- [29] Sun H, Gong ZC, Yin JY, et al. The association of adiponectin allele 45T/G and -11377C/G polymorphisms with type 2 diabetes and rosiglitazone response in Chinese patients. Br J Clin Pharmacol, 2008, 65:917-926.
- [30] Jang YS, Lee JH, Chae JS, et al. Association of the 276G3T polymorphism of the adiponectin gene with cardiovascular disease risk factors in nondiabetic Koreans. Am J Clin Nutr, 2005, 82:760.
- [31] Menzaghi C, Ecolino T, Paola RD, et al. A haplotype at the adiponectin locus is associated with obesity and other features of the insulin resistance syndrome. Diabetes, 2002, 51:2306-2312.

(收稿日期:2008-04-06)

(本文编辑:张林东)