金昌队列人群痛风发病危险因素的Cox回归分析

何彩丽 程宁 荣右明 李海燕 李娟生 丁蛟 胡晓斌
蒲宏全 任晓卫 白亚娜
730000 兰州大学公共卫生学院流行病与卫生统计学研究所(何彩丽、荣右明、李娟生、胡晓斌、任晓卫、白亚娜)；730000 兰州大学基础医学院(程宁)；737100 金昌,金川集团有限公司职工医院(李海燕、丁蛟、蒲宏全)
何彩丽、程宁同为第一作者
通信作者：白亚娜, Email: baiyana@lzu.edu.cn
DOI:10.3760/cma.j.issn.0254-6450.2017.07.010

【摘要】目的 了解金昌队列人群中痛风的发病状况及影响因素,为制订痛风的防治措施提供科学依据。方法 采用前瞻性队列研究方法,以金昌队列基线资料中未患痛风的人群作为研究对象,于2013年1月24日至2015年11月24日完成随访问卷调查、体检检查和实验室检测。采用Cox回归模型分析金昌队列人群中痛风发病的影响因素,并用对数线性模型分析各影响因素之间的交互作用。结果 33 153例随访人群中新发痛风病例277例,痛风发病率为0.8%,男性整体上高于女性,但在60岁以后男女痛风发病率相当。多因素Cox回归分析结果显示,年龄在40岁以上(40~59岁;HR=2.982, 95%CI: 1.503~5.981; 60~91岁;HR=2.588, 95%CI: 1.107~6.049)、大量酒精摄入(OR=2.234, 95%CI: 1.128~4.427)、肥胖(OR=2.204, 95%CI: 1.216~3.997)、糖尿病(OR=2.725, 95%CI: 1.500~4.950)和高尿酸(OR=5.963, 95%CI: 3.577~9.943)是痛风发病的危险因素,每周豆类摄入≥250 g(OR=0.528, 95%CI: 0.345~0.808)和经常体育锻炼(OR=0.499, 95%CI: 0.286~0.869)是痛风发病的保护性因素。对数线性模型交互作用分析结果显示,各影响因素之间存在二阶效应。结论 年龄、豆类、酒精、体育锻炼、肥胖、糖尿病和高尿酸是痛风发病的重要影响因素。培养良好的生活饮食习惯,定期进行体检,有利于预防和控制该职业人群痛风病的发生。

【关键词】 痛风; 发病; 队列研究; Cox回归分析

基金项目: 兰州大学中央高校基本科研业务费专项资金(862176); 国家自然科学基金（81673248）

Risk factors of gout in Jinchang cohort: a Cox regression analysis He Caili, Cheng Ning, Rong Youming, Li Haiyan, Li Juansheng, Ding Jiao, Hu Xiaobin, Pu Hongquan, Ren Xiaowei, Bai Yana Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, China (He CL, Rong YM, Li JS, Hu XB, Ren XV, Bai YN); Basic Medical College, Lanzhou University, Lanzhou 730000, China (Cheng N); Workers’ Hospital of Jinchuan Group Co, Ltd, Jinchang 737100, China (Li HY, Ding J, Pu HQ)
He Caili and Cheng Ning are the first authors who contributed equally to the article. Corresponding author: Bai Yana, Email: baiyana@lzu.edu.cn

【Abstract】Objective To explore the incidence and risk factors of gout in Jinchang cohort and provide scientific evidence for the prevention and control of gout. Methods People without gout detected by baseline survey in Jinchang cohort were selected as study subjects. All the subjects were followed up through questionnaire interview, physical examination as well as laboratory test from January 24, 2013 to November 24, 2015. Cox regression model was used to analyze the risk factors for gout in Jinchang cohort. In addition, log-linear model was used to analyze the interaction between risk factors. Results A total of 33 153 subjects were followed up, and there were 277 newly diagnosed gout cases in the cohort. The overall incidence of gout was 0.8%. The incidence of gout in males was
higher than that in the females, but the incidence of gout in males and females was similar after the age of 60 years. Cox regression analysis showed that age > 40 years (at age 40 to 59 years: HR = 2.982, 95% CI: 1.503–5.981; at age 60 to 91 years: HR = 2.588, 95% CI: 1.107–6.049), alcohol abuse (HR = 2.234, 95% CI: 1.128–4.427), obesity (HR = 2.204, 95% CI: 1.216–3.997), diabetes (HR = 2.725, 95% CI: 1.500–4.950) and high uric acid (HR = 5.963, 95% CI: 3.577–9.943) were risk factors for gout, while weekly beans intake ≥0.25 kg (HR = 0.528, 95% CI: 0.345–0.808) and regular physical exercise (HR = 0.499, 95% CI: 0.286–0.869) were protective factors for gout. The analysis with log-linear model showed that there were two order effects between the risk factors. **Conclusions** Age, beans intake, alcohol abuse, physical exercises, obesity, diabetes and high uric acid were important factors influencing the incidence of gout. It is important to have healthy lifestyle and dietary habits, receive regular health examination to prevent and control the incidence of gout in this cohort.

Key words Gout; Incidence; Cohort study; Cox regression analysis

Fund programs Fundamental Research Funds for the Central Universities (862176); National Natural Science Foundation of China (81673248)

近几十年来，痛风的发病率在世界范围内都在不断增加。2005—2012年瑞典总人群的痛风发病率增加了50%[1]，美国20年间原发性痛风的发病率增加了2倍多[2]，我国近15年来城市医院住院的痛风病例数也正在直线上升[3]。痛风与MS关系密切[4-5]，给全球许多国家带来了沉重的经济负担。我国大多数文献报道的是痛风的患病情况，依据前瞻性队列研究其患病情况的资料仍然稀少。本研究报道了金昌队列人群痛风的发病率，并采用多因素Cox回归分析方法分析金昌队列人群中痛风发病的风险因素，为制定该人群痛风的防治措施提供科学依据。

对象与方法

1. 研究对象：以金昌队列基线资料中未患痛风的金昌公司职工作为研究对象，基线调查从2011年6月24日开始，随访从2013年1月24日开始，截止2015年11月24日，共观察研究对象33 153例，平均随访时间（2.29±0.54）年。其中男性20 142例，女性13 010例，平均年龄（46.39±12.81）岁。随访期间共有新发痛风病例277例。随访内容包括问卷调查、体格检查和实验室检测[6-10]。问卷主要内容：一般人口学特征、生活饮食习惯、慢性病现患状况、家族病史等；体格检查包括身高、体重、血压等；实验室检测包括FPG、TC、TG、HDL-C、LDL-C、尿酸（UA）、尿素氮（BUN）、肌酐（Cr）等。

2. 流行病学调查：研究对象签署知情同意书后，由经过统一培训的调查人员获取流行病学资料；临床检验和疾病诊断：由金川集团职工医院专业人员完成。吸烟指每天至少吸1支，连续吸烟6个月以上；饮酒指平均每周至少饮1次，连续6个月以上；饮茶指每周至少饮3次，连续6个月以上；体育锻炼平均每周3次以上，每次锻炼时间超过30 min视为“经常”。吸烟指数＝吸烟量（支/d）×吸烟年数（年）；每周饮酒酒精含量＝啤酒的瓶数×640（ml）×0.043（%v/v）＋葡萄酒的两数×0.129×50（%v/v）＋白酒的两数×0.45×50（%v/v）×频率（次/周）×0.8；饮茶指数＝饮茶量（两/月）×饮茶年数（年）。

3. 相关诊断标准：痛风，主要采用1977年美国风湿病学会（ACR）制订的痛风诊断标准和1985年制订的霍姆斯（Holmes）标准。将关节滑液和痛风结节中找到“尿酸盐结晶”作为诊断痛风的“金标准”。在条件受限的情况下，也可根据患者的临床特征作出诊断：即根据12条临床特征中具备≥6条（ACR标准第3条）；或者根据患者同时具备高尿酸血症、有反复发作的急性单关节炎及无症状间歇期、秋水仙碱对缓解症状有效等几项条件（Holmes标准第3条）作出痛风诊断。本次研究中的痛风病例由具有临床诊断和治疗资质的金川集团职工医院（三甲医院）依据此标准诊断。BMI：在24～28 kg/m²为超重，BMI≥28 kg/m²为肥胖。FPG：在6.1～6.9 mmol/L为空腹血糖受损，FPG≥7.0 mmol/L为糖尿病。UA：男性≥420 mmol/L，女性≥357 mmol/L为高尿酸。血脂和血压分层详细参见2016年中国成人血脂异常防治指南[11]和2010年中国高血压防治指南[12]。

4. 统计分析：利用EpiData 3.1软件建立数据库，并采用双录入进行数据录入的质量控制。采用SPSS 20.0软件进行数据分析：采用χ²检验比较金川队列人群中不同年龄性别分层下痛风的患病状况，采用多因素Cox回归分析影响该人群痛风发病的影响因素，运用对数线性模型进行交互作用分析，检验水准均作为α=0.05。

结 果

1. 金昌队列人群痛风发病状况：总发病人数为277例，发病率为261.05/10万人年，其中男性新发痛风病例为238例，发病率为371.24/10万人年，女性新
发病风病例为39例，发病率为92.86/10万人年，男性发病风病例多见于年轻女性，差异有统计学意义。该差异主要表现在：60岁以前，随着年龄的增加，本病高发率持续上升，60岁以后男性风病死亡率开始下降，女性风病死亡率持续上升，男性风病死亡率差异无统计学意义。见表1。

2. 金凤队列群风病的多因素Cox回归结果：以生存时间t为横轴，对数生存率ln[-ln(S(t))]为纵轴，绘制分类协变量各组别的生存曲线，协变量各组别对应的曲线平行，满足Cox回归模型的风险比条件。对人口学特征、生活饮食习惯和实验室指

例条件。对人口学特征、生活饮食习惯和实验室指

标进行多因素Cox回归分析结果显示：性别、年龄、病史、吸烟、饮酒、运动、体育锻炼、SBP、DBP、BMI、FPG、TG、HDL-C和UA有统计学意义（表2）。

3. 金凤队列人群风病的多因素Cox回归结果：将多因素Cox回归分析中差异有统计学意义的变量纳入多因素Cox回归模型，进行风病发病的影响因素研究。结果显示：年龄在40岁以上、血压＞120/80mmHg，肥胖、高尿酸和高尿酸性风病发病的危险因素，每周豆类摄入＞250g，常参加体育锻炼为风

表1 金凤队列不同年龄不同性别人群的发病数/10万人年

<table>
<thead>
<tr>
<th>年龄组(岁)</th>
<th>男性</th>
<th></th>
<th>女性</th>
<th></th>
<th>合计</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>病例数/人年数</td>
<td>发病率</td>
<td>病例数/人年数</td>
<td>发病率</td>
<td>病例数/人年数</td>
</tr>
<tr>
<td>19–</td>
<td>37/18180</td>
<td>103.52</td>
<td>3/10331</td>
<td>29.04</td>
<td>40/28511</td>
</tr>
<tr>
<td>40–</td>
<td>158/30765</td>
<td>513.57</td>
<td>21/24603</td>
<td>85.36</td>
<td>179/55368</td>
</tr>
<tr>
<td>60–91</td>
<td>43/15165</td>
<td>283.5</td>
<td>15/7065</td>
<td>212.31</td>
<td>58/22230</td>
</tr>
<tr>
<td>合计</td>
<td>238/64110</td>
<td>371.24</td>
<td>39/41999</td>
<td>92.86</td>
<td>277/106109</td>
</tr>
<tr>
<td>χ²值</td>
<td>33.831</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P值</td>
<td><0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表2 金凤队列人群风病的多因素Cox分析

<table>
<thead>
<tr>
<th>变量</th>
<th>HR值(95%CI)</th>
<th>变量</th>
<th>HR值(95%CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>性别</td>
<td></td>
<td>性别指数</td>
<td></td>
</tr>
<tr>
<td>男</td>
<td>1.00</td>
<td>0</td>
<td>1.00</td>
</tr>
<tr>
<td>女</td>
<td>0.25(0.18–0.35)</td>
<td>1–</td>
<td>1.57(0.98–2.30)</td>
</tr>
<tr>
<td>年龄组(岁)</td>
<td>19–</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>40–</td>
<td>2.38(1.69–3.36)</td>
<td>5.001–</td>
<td>2.03(1.25–3.31)</td>
</tr>
<tr>
<td>60–91</td>
<td>2.08(1.39–3.12)</td>
<td>120–</td>
<td>3.50(2.62–4.66)</td>
</tr>
<tr>
<td>新鲜蔬菜(500g/周)</td>
<td>小于5</td>
<td>1.00</td>
<td>1.78(1.35–2.36)</td>
</tr>
<tr>
<td>大于等于5</td>
<td>0.60(0.40–0.92)</td>
<td>140–</td>
<td>1.99(1.40–2.84)</td>
</tr>
<tr>
<td>新鲜水果(500g/周)</td>
<td>小于2.5</td>
<td>1.00</td>
<td>2.30(1.44–3.69)</td>
</tr>
<tr>
<td>大于等于2.5</td>
<td>0.62(0.41–0.93)</td>
<td>80–</td>
<td>1.00</td>
</tr>
<tr>
<td>豆类(500g/周)</td>
<td>小于0.5</td>
<td>1.00</td>
<td>1.56(1.17–2.07)</td>
</tr>
<tr>
<td>大于等于0.5</td>
<td>0.49(0.33–0.74)</td>
<td>90–</td>
<td>2.31(1.66–3.20)</td>
</tr>
<tr>
<td>油脂</td>
<td>较高</td>
<td>1.00</td>
<td>1.49(0.85–2.59)</td>
</tr>
<tr>
<td>适中</td>
<td>0.40(0.25–0.63)</td>
<td>100–</td>
<td>3.51(2.01–6.11)</td>
</tr>
<tr>
<td>较低</td>
<td>0.38(0.22–0.67)</td>
<td>22.2(1.54–3.16)</td>
<td></td>
</tr>
<tr>
<td>吸烟指数</td>
<td>0</td>
<td>1.00</td>
<td>22.2(1.54–3.16)</td>
</tr>
<tr>
<td>1–</td>
<td>2.02(1.54–2.64)</td>
<td>≥100</td>
<td>3.82(2.34–6.25)</td>
</tr>
<tr>
<td>501–</td>
<td>2.22(1.56–3.16)</td>
<td>≥1001</td>
<td>3.82(2.34–6.25)</td>
</tr>
<tr>
<td>饮茶指数</td>
<td>0</td>
<td>1.00</td>
<td>3.82(2.34–6.25)</td>
</tr>
<tr>
<td>1–</td>
<td>1.53(1.13–2.08)</td>
<td>≥200</td>
<td>3.82(2.34–6.25)</td>
</tr>
<tr>
<td>51–</td>
<td>1.99(1.41–2.80)</td>
<td>≥2001</td>
<td>3.82(2.34–6.25)</td>
</tr>
<tr>
<td>101–</td>
<td>1.92(1.32–2.80)</td>
<td>≥2001</td>
<td>3.82(2.34–6.25)</td>
</tr>
<tr>
<td>体脂指数</td>
<td>40–</td>
<td>1.00</td>
<td>3.82(2.34–6.25)</td>
</tr>
<tr>
<td>1–</td>
<td>0.66(0.40–1.09)</td>
<td>≥200</td>
<td>3.82(2.34–6.25)</td>
</tr>
<tr>
<td>常</td>
<td>0.41(0.24–0.70)</td>
<td>≥200</td>
<td>3.82(2.34–6.25)</td>
</tr>
</tbody>
</table>
风发病的保护性因素（表3）。

4. 影响因素间的交互作用分析：将影响金昌队列人群痛风发病的7个因素引人对数线性模型，分析各因素之间可能存在的交互作用。先采用Model-Selection过程选择最佳的模型，再采用General过程得到具体的参数估计和检验结果。K阶效应检验结果显示，一阶效应（主效应）和二阶交互效应的似然比χ²和Pearson χ²检验有统计学意义（P<0.01）。因此在分层模型中定义最高分层为所有二阶（All 2-way），使用向后排除法逐步从检验概率大于标准值的效应中，淘汰拟合优度变化最小的效应，进行筛选显著效应。二阶筛选结果显示（表4）：豆类×体育锻炼、豆类×BMI、BMI×体育锻炼、BMI×尿酸、BMI×年龄、BMI×FPG、体育锻炼×年龄、体育锻炼×酒精指数、尿酸×年龄、尿酸×酒精指数、年龄×FPG和年龄×酒精指数的交互作用有统计学意义（P<0.05），以这12个有统计学意义的二阶效应进行简化模型的参数估计。从表5看出，经常体育锻炼与豆类（≥ 250 g/周）之间是协调作用，豆类（< 250 g/周）与年龄在19~39岁之间是协同作用，经常体育锻炼与尿酸之间的交互作用，UA正常与肥胖之间是拮抗作用，年龄在19~39岁与BMI正常之间是协同作用，BMI正常与年龄之间是协同作用，经常体育锻炼与BMI之间的交互作用有统计学意义（P<0.05）。

表3 金昌队列痛风发病的多因素Cox回归

<table>
<thead>
<tr>
<th>影响因素</th>
<th>β</th>
<th>Waldχ²值</th>
<th>P值</th>
<th>HR值(95%CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>年龄(岁)</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19~20</td>
<td>1.009</td>
<td>0.350</td>
<td>9.767</td>
<td><0.01</td>
</tr>
<tr>
<td>20~29</td>
<td>0.951</td>
<td>0.433</td>
<td>4.817</td>
<td><0.05</td>
</tr>
<tr>
<td>BMI(500 g/周)</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><0.5</td>
<td>-0.639</td>
<td>0.217</td>
<td>8.640</td>
<td><0.01</td>
</tr>
<tr>
<td>BMI(1,000)</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5~0.9</td>
<td>-0.309</td>
<td>0.263</td>
<td>1.388</td>
<td><0.23</td>
</tr>
<tr>
<td>≥1,000</td>
<td>-0.695</td>
<td>0.283</td>
<td>6.035</td>
<td><0.05</td>
</tr>
<tr>
<td>酒精指数</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><0.1</td>
<td>-0.372</td>
<td>0.322</td>
<td>3.390</td>
<td><0.25</td>
</tr>
<tr>
<td>0.1~0.5</td>
<td>-0.090</td>
<td>0.486</td>
<td>0.034</td>
<td><0.853</td>
</tr>
<tr>
<td>≥0.5</td>
<td>0.804</td>
<td>0.349</td>
<td>5.311</td>
<td><0.05</td>
</tr>
</tbody>
</table>

表4 二阶分层模型的筛选分析

<table>
<thead>
<tr>
<th>影响因素</th>
<th>χ²值</th>
<th>df</th>
<th>P值</th>
</tr>
</thead>
<tbody>
<tr>
<td>豆类×体育锻炼</td>
<td>43.045</td>
<td>2</td>
<td>0.000</td>
</tr>
<tr>
<td>豆类×年龄</td>
<td>20.736</td>
<td>2</td>
<td>0.000</td>
</tr>
<tr>
<td>BMI×体育锻炼</td>
<td>10.746</td>
<td>4</td>
<td>0.030</td>
</tr>
<tr>
<td>BMI×尿酸</td>
<td>178.456</td>
<td>2</td>
<td>0.000</td>
</tr>
<tr>
<td>BMI×年龄</td>
<td>45.117</td>
<td>4</td>
<td>0.000</td>
</tr>
<tr>
<td>BMI×FPG</td>
<td>60.363</td>
<td>4</td>
<td>0.000</td>
</tr>
<tr>
<td>体育锻炼×年龄</td>
<td>190.094</td>
<td>4</td>
<td>0.000</td>
</tr>
<tr>
<td>体育锻炼×酒精指数</td>
<td>6.539</td>
<td>6</td>
<td>0.366</td>
</tr>
<tr>
<td>尿酸×年龄</td>
<td>76.428</td>
<td>2</td>
<td>0.000</td>
</tr>
<tr>
<td>尿酸×酒精指数</td>
<td>55.166</td>
<td>3</td>
<td>0.000</td>
</tr>
<tr>
<td>年龄×BMI</td>
<td>157.747</td>
<td>4</td>
<td>0.000</td>
</tr>
<tr>
<td>年龄×FPG</td>
<td>16.778</td>
<td>6</td>
<td>0.010</td>
</tr>
</tbody>
</table>

讨论

交互作用分析结果显示，各影响因素之间
表5 简约模型参数估计

<table>
<thead>
<tr>
<th>参数</th>
<th>估计</th>
<th>s</th>
<th>Z值</th>
<th>P值</th>
</tr>
</thead>
<tbody>
<tr>
<td>常量</td>
<td>-0.040</td>
<td>0.113</td>
<td>-0.351</td>
<td>0.726</td>
</tr>
<tr>
<td>[豆类≥250g/周]</td>
<td>[体育锻炼=经常]</td>
<td>1.404</td>
<td>0.075</td>
<td>18.709</td>
</tr>
<tr>
<td>[豆类>250g/周]</td>
<td>[年龄=19 – 39岁]</td>
<td>0.639</td>
<td>0.171</td>
<td>3.729</td>
</tr>
<tr>
<td>[体育锻炼=经常]</td>
<td>[BMI=肥胖]</td>
<td>-0.607</td>
<td>0.114</td>
<td>-5.322</td>
</tr>
<tr>
<td>[尿酸=正常]</td>
<td>[BMI=正常]</td>
<td>1.234</td>
<td>0.071</td>
<td>17.415</td>
</tr>
<tr>
<td>[尿酸=正常]</td>
<td>[BMI=肥胖]</td>
<td>-0.177</td>
<td>0.078</td>
<td>-2.267</td>
</tr>
<tr>
<td>[BMI=正常]</td>
<td>[年龄=19 – 39岁]</td>
<td>0.794</td>
<td>0.063</td>
<td>12.615</td>
</tr>
<tr>
<td>[FPG=正常]</td>
<td>[BMI=正常]</td>
<td>2.350</td>
<td>0.082</td>
<td>28.803</td>
</tr>
<tr>
<td>[FPG=正常]</td>
<td>[BMI=肥胖]</td>
<td>0.362</td>
<td>0.121</td>
<td>2.980</td>
</tr>
<tr>
<td>[体育锻炼=经常]</td>
<td>[年龄=40 – 59岁]</td>
<td>-1.219</td>
<td>0.058</td>
<td>-21.154</td>
</tr>
<tr>
<td>[体育锻炼=经常]</td>
<td>[酒精指数=0]</td>
<td>1.517</td>
<td>0.072</td>
<td>21.194</td>
</tr>
<tr>
<td>[体育锻炼=经常]</td>
<td>[酒精指数=100]</td>
<td>-0.486</td>
<td>0.124</td>
<td>-3.916</td>
</tr>
<tr>
<td>[尿酸=正常]</td>
<td>[年龄=19 – 39岁]</td>
<td>-0.775</td>
<td>0.062</td>
<td>-12.552</td>
</tr>
<tr>
<td>[尿酸=正常]</td>
<td>[酒精指数=100]</td>
<td>-0.340</td>
<td>0.114</td>
<td>-3.500</td>
</tr>
<tr>
<td>[FPG=正常]</td>
<td>[年龄=19 – 39岁]</td>
<td>1.987</td>
<td>0.144</td>
<td>13.837</td>
</tr>
<tr>
<td>[FPG=正常]</td>
<td>[年龄=40 – 59岁]</td>
<td>0.685</td>
<td>0.081</td>
<td>8.505</td>
</tr>
<tr>
<td>[酒精指数=0]</td>
<td>[年龄=19 – 39岁]</td>
<td>-0.848</td>
<td>0.078</td>
<td>-10.844</td>
</tr>
<tr>
<td>[酒精指数=0]</td>
<td>[年龄=40 – 59岁]</td>
<td>-0.791</td>
<td>0.072</td>
<td>-11.059</td>
</tr>
</tbody>
</table>

存在协同或者拮抗的交互作用，而且各因素的不同分层之间交互作用的效果也有所不同，这提示我们在预防和控制痛风病的过程中应充分考虑各因素之间的联系，如体育锻炼和豆类摄入之间的协同作用，酒精和肥胖之间的协同作用，以及体育锻炼和肥胖之间的拮抗作用等，制定合理的预防措施，提高痛风防治的效果。

综上所述，培养良好的生活习惯，定期进行体检，有利于预防和控制该职业人群痛风病的发生。