文章摘要
黄丽红,魏永越,陈峰.如何控制观察性疗效比较研究中的混杂因素:(一)已测量混杂因素的统计学分析方法[J].中华流行病学杂志,2019,40(10):1304-1309
如何控制观察性疗效比较研究中的混杂因素:(一)已测量混杂因素的统计学分析方法
Confounder adjustment in observational comparative effectiveness researches: (1) statistical adjustment approaches for measured confounder
收稿日期:2019-03-18  出版日期:2019-10-18
DOI:10.3760/cma.j.issn.0254-6450.2019.10.024
中文关键词: 观察性疗效比较研究;现实世界研究;已测量混杂;控制;统计方法
英文关键词: Observational comparative effectiveness research;Real world study;Measured confounder;Adjustment;Statistical method
基金项目:观察性疗效比较研究;现实世界研究;已测量混杂;控制;统计方法基金项目:国家自然科学青年基金(81903407)
作者单位E-mail
黄丽红 复旦大学附属中山医院生物统计室, 上海 200032 huang.lihong@zs-hospital.sh.cn 
魏永越 南京医科大学公共卫生学院生物统计学系 211166  
陈峰 南京医科大学公共卫生学院生物统计学系 211166  
摘要点击次数: 2768
全文下载次数: 1393
中文摘要:
      观察性疗效比较研究作为随机对照研究的补充,其应用价值越来越受到关注,混杂偏倚是其重要偏倚来源。本文介绍观察性疗效比较研究中已测量的混杂因素控制的统计分析方法。对于已测量的混杂因素,可采用传统的分层分析、配对分析、协方差分析或多因素分析,也可采用倾向性评分、疾病风险评分等方法进行混杂因素匹配、分层和调整。良好的设计需从源头控制各种混杂,事后统计分析则应在理解各类方法的应用前提下,严格把握适用条件。
英文摘要:
      Observational comparative effectiveness studies have been widely conducted to provide evidence on additional effectiveness and to support randomized controlled findings in research. Although this type of study becomes more important over time, challenges related to the common biases which stemmed from confounders, are difficult to control. This manuscript summarizes some statistical methods used on adjusting measured confounders that often noticed in research, regarding the observational comparative effectiveness. Useful traditional methods would include stratified analysis, paired analysis, covariate model and multivariable model, etc.. Unconventional adjustment approaches such as propensity score and disease risk score methods may also be used in studies, for matching, stratification and adjustment. A good study design should be able to control confounders. The limitations of all the post hoc statistical adjustment methods should also be fully understood before being appropriately applied in practical events.
查看全文   Html全文     查看/发表评论  下载PDF阅读器
关闭