王小磊,田梦圆,张娜,高红,谭红专.纵向数据中评估暴露总效应的序列条件平均模型[J].中华流行病学杂志,2020,41(1):111-114 |
纵向数据中评估暴露总效应的序列条件平均模型 |
A sequential conditional mean model for assessing total effects of exposure in longitudinal data |
收稿日期:2019-06-19 出版日期:2020-01-14 |
DOI:10.3760/cma.j.issn.0254-6450.2020.01.020 |
中文关键词: 序列条件平均模型 时依性协变量 倾向评分 广义估计方程 |
英文关键词: Sequential conditional mean model Time-dependent covariate Propensity score Generalized estimating equation |
基金项目: |
|
摘要点击次数: 4179 |
全文下载次数: 1734 |
中文摘要: |
在前瞻性队列研究中,经常需要对研究对象进行多次随访,其产生的多个观测值之间相互关联,常导致时依性混杂,这种情况下的数据一般不满足传统的多因素回归分析的应用条件。序列条件平均模型(SCMM)是一种可以处理时依性混杂的新方法。本文主要对SCMM的基本原理、步骤及特点进行概括。 |
英文摘要: |
In prospective cohort study, multi follow up is often necessary for study subjects, and the observed values are correlated with each other, usually resulting in time-dependent confounding. In this case, the data generally do not meet the application conditions of traditional multivariate regression analysis. Sequential conditional mean model (SCMM) is a new approach that can deal with time-dependent confounding. This paper mainly summarizes the basic theory, steps and characteristics of SCMM. |
查看全文
Html全文
查看/发表评论 下载PDF阅读器 |
|
关闭 |