文章摘要
李忠奇,陶必林,占梦瑶,吴祝超,吴继周,王建明.时间序列模型应用于新型冠状病毒肺炎疫情预测效果比较研究[J].中华流行病学杂志,2021,42(3):421-426
时间序列模型应用于新型冠状病毒肺炎疫情预测效果比较研究
A comparative study of time series models in predicting COVID-19 cases
收稿日期:2020-11-16  出版日期:2021-03-29
DOI:10.3760/cma.j.cn112338-20201116-01333
中文关键词: 新型冠状病毒肺炎;差分自回归移动平均模型;循环神经网络模型;预测
英文关键词: COVID-19;Autoregressive integrated moving average model;Recurrent neural network model;Predicting
基金项目:国家重点研发计划(2017YFC0907000);国家自然科学基金(81973103);高校哲学社会科学研究重大项目(2020SJZDA096)
作者单位E-mail
李忠奇 南京医科大学公共卫生学院全球健康中心流行病学系 211166  
陶必林 南京医科大学公共卫生学院全球健康中心流行病学系 211166  
占梦瑶 南京医科大学公共卫生学院全球健康中心流行病学系 211166  
吴祝超 南京医科大学公共卫生学院全球健康中心流行病学系 211166  
吴继周 南京医科大学公共卫生学院全球健康中心流行病学系 211166  
王建明 南京医科大学公共卫生学院全球健康中心流行病学系 211166 jmwang@njmu.edu.cn 
摘要点击次数: 2245
全文下载次数: 874
中文摘要:
      目的 比较常见时间序列模型应用于新型冠状病毒肺炎(COVID-19)疫情预测的效果。方法 收集2020年4月1日至9月30日美国、印度和巴西3个国家COVID-19每日确诊病例数,分别建立差分自回归移动平均(ARIMA)模型和循环神经网络(RNN)模型,使用平均绝对百分比误差(MAPE)和均方根误差(RMSE)等指标,比较不同模型预测9月21-30日确诊病例的表现。结果 应用ARIMA模型预测美国、印度和巴西疫情的MAPE分别为13.18%、9.18%和17.30%,RMSE分别为6 542.32、8 069.50和3 954.59;应用RNN模型预测美国、印度和巴西疫情的MAPE分别为15.27%、7.23%和26.02%,RMSE分别为6 877.71、6 457.07和5 950.88。结论 ARIMA和RNN模型的COVID-19预测效果存在地区差异,ARIMA模型的预测效果在美国和巴西较优,而RNN模型的预测效果在印度较优。
英文摘要:
      Objective To compare the performances of different time series models in predicting COVID-19 in different countries. Methods We collected the daily confirmed case numbers of COVID-19 in the USA, India, and Brazil from April 1 to September 30, 2020, and then constructed an autoregressive integrated moving average (ARIMA) model and a recurrent neural network (RNN) model, respectively. We applied the mean absolute percentage error (MAPE) and root mean square error (RMSE) to compare the performances of the two models in predicting the case numbers from September 21 to September 30, 2020. Results For the ARIMA models applied in the USA, India, and Brazil, the MAPEs were 13.18%, 9.18%, and 17.30%, respectively, and the RMSEs were 6 542.32, 8 069.50, and 3 954.59, respectively. For the RNN models applied in the USA, India, and Brazil, the MAPEs were 15.27%, 7.23% and 26.02%, respectively, and the RMSEs were 6 877.71, 6 457.07, and 5 950.88, respectively. Conclusions The performance of the prediction models varied with country. The ARIMA model had a better prediction performance for COVID-19 in the USA and Brazil, while the RNN model was more suitable in India.
查看全文   Html全文     查看/发表评论  下载PDF阅读器
关闭