文章摘要
郭金鑫,赵厚宇,詹思延.基于多中心数据库的观察性关联分析中残余混杂的控制与评估方法[J].中华流行病学杂志,2023,44(8):1296-1301
基于多中心数据库的观察性关联分析中残余混杂的控制与评估方法
Methods for controlling and evaluating residual confounding in the association analysis of observational study with a multicenter database
收稿日期:2023-02-16  出版日期:2023-08-18
DOI:10.3760/cma.j.cn112338-20230216-00083
中文关键词: 多中心数据库  观察性研究  残余混杂  统计方法
英文关键词: Multicenter database  Observational study  Residual confounding  Statistical method
基金项目:国家自然科学基金(81973146)
作者单位E-mail
郭金鑫 北京大学公共卫生学院流行病与卫生统计学系/重大疾病流行病学教育部重点实验室, 北京 100191  
赵厚宇 北京大学公共卫生学院流行病与卫生统计学系/重大疾病流行病学教育部重点实验室, 北京 100191  
詹思延 北京大学公共卫生学院流行病与卫生统计学系/重大疾病流行病学教育部重点实验室, 北京 100191
北京大学第三医院临床流行病学研究中心, 北京 100191
北京大学人工智能研究院智慧公众健康研究中心, 北京 100871 
siyan-zhan@bjmu.edu.cn 
摘要点击次数: 3248
全文下载次数: 939
中文摘要:
      基于健康医疗大数据的观察性研究越来越受到关注,残余混杂的控制与评估是其中亟须解决的关键问题,本文总结了多中心场景下开展关联分析的残余混杂统计学调整和敏感性分析方法。基于个体水平数据,可由各分中心使用断点回归等多种方法调整残余混杂,然后加权合并得到效应估计值;基于Meta水平数据,可采用贝叶斯Meta分析的方法获得调整后的合并效应值,也可开展残余混杂的敏感性分析,计算E值、p(q)、T(r,q)和G(r,q)。上述方法应根据适用条件及优缺点进行合理选择,如利用分中心个体数据进行残余混杂调整,通常要求严格的研究设计,并面临较高的协调成本;贝叶斯Meta分析基于部分强假设;E值等敏感性分析结果仍需经过专业的判断,以评估残余混杂风险大小。因此,利用多中心数据库开展观察性关联分析时,残余混杂的控制与评估方法仍待进一步发展和完善。
英文摘要:
      The observational research based on big data in healthcare has attracted increasing attention, with the control and evaluation of residual confounding being the critical issue that needs to be solved urgently. This review summarized the methods for statistical adjustment and sensitivity analysis of residual confounding in the association analysis with a multicenter database. Based on individual-level data, the residual confounding can be adjusted in each subcenter using methods such as regression discontinuity design, while the pooled estimate can be obtained as a weighted average. Based on the center-level results, the Bayesian Meta-analysis method can adjust the pooled estimates. The sensitivity analysis of residual confounding can also be carried out using center-level data to calculate the E-value, p(q)、T(r,q) and G(r,q). The abovementioned methods should be selected reasonably according to the requirements for practical applications, advantages, and disadvantages. For example, the use of subcenter individual data for residual confounding adjustment usually needs strict study design and frequent coordination; the Bayesian Meta-analysis is based on some strong assumptions; the interpretation of the results in the sensitivity analysis, such as E-value requires professional judgment to assess the risk of residual confounding. Therefore, the methods for controlling and evaluating residual confounding in association analysis based on multicenter databases still need further development and improvement.
查看全文   Html全文     查看/发表评论  下载PDF阅读器
关闭