文章摘要
刘静春,霍亚婷,曹岁霞,王予童,刘卉萌,张彬艳,徐坤,杨佩莹,曾令霞,党少农,颜虹,米白冰.界标分析在队列研究中的应用及实例分析[J].中华流行病学杂志,2023,44(11):1808-1814
界标分析在队列研究中的应用及实例分析
Application and case study of landmark analysis in cohort study
收稿日期:2023-02-23  出版日期:2023-11-17
DOI:10.3760/cma.j.cn112338-20230223-00099
中文关键词: 界标分析  反向因果  队列研究
英文关键词: Landmark analysis  Reverse causation  Cohort study
基金项目:国家自然科学基金(82103944);国家重点研发计划(2017YFC0907200,2017YFC0907201);陕西省科技资源开放共享平台(2023-CX-PT-47)
作者单位E-mail
刘静春 西安交通大学医学部公共卫生学院流行病与卫生统计系, 西安 710061
陕西省重大疾病防控与大健康数据共享平台, 西安 710061 
 
霍亚婷 西安交通大学医学部公共卫生学院流行病与卫生统计系, 西安 710061
陕西省重大疾病防控与大健康数据共享平台, 西安 710061 
 
曹岁霞 西安交通大学医学部公共卫生学院流行病与卫生统计系, 西安 710061
陕西省重大疾病防控与大健康数据共享平台, 西安 710061 
 
王予童 西安交通大学医学部公共卫生学院流行病与卫生统计系, 西安 710061
陕西省重大疾病防控与大健康数据共享平台, 西安 710061 
 
刘卉萌 陕西省重大疾病防控与大健康数据共享平台, 西安 710061
西安交通大学医学部公共卫生学院劳动卫生与环境卫生系, 西安 710061 
 
张彬艳 西安交通大学医学部公共卫生学院流行病与卫生统计系, 西安 710061
陕西省重大疾病防控与大健康数据共享平台, 西安 710061 
 
徐坤 西安交通大学医学部公共卫生学院流行病与卫生统计系, 西安 710061
陕西省重大疾病防控与大健康数据共享平台, 西安 710061 
 
杨佩莹 西安交通大学医学部公共卫生学院流行病与卫生统计系, 西安 710061
陕西省重大疾病防控与大健康数据共享平台, 西安 710061 
 
曾令霞 西安交通大学医学部公共卫生学院流行病与卫生统计系, 西安 710061
陕西省疾病防控与健康促进研究重点实验室, 西安 710061 
 
党少农 西安交通大学医学部公共卫生学院流行病与卫生统计系, 西安 710061
陕西省疾病防控与健康促进研究重点实验室, 西安 710061 
 
颜虹 西安交通大学医学部公共卫生学院流行病与卫生统计系, 西安 710061
陕西省疾病防控与健康促进研究重点实验室, 西安 710061 
 
米白冰 西安交通大学医学部公共卫生学院流行病与卫生统计系, 西安 710061
陕西省疾病防控与健康促进研究重点实验室, 西安 710061 
xjtu.mi@xjtu.edu.cn 
摘要点击次数: 2990
全文下载次数: 1056
中文摘要:
      队列研究设计具有时序关系明确的特点,其论证因果关联的强度优于其他观察性研究,是分析性流行病学的重要研究方法之一。然而,队列研究对象的纳入过程中常采用筛检诊断或其他方式排除已出现结局事件的个体,而筛检诊断的准确性、排除的有效性会影响纳入研究个体基线状况评估的准确性,进而导致对因果效应的估计可能存在暴露-结局因果倒置。界标分析可以通过排除可能存在暴露-结局时序不明的研究对象以控制反向因果。本研究阐述界标分析的基本原理与分析步骤,并运用中国老年人健康长寿影响因素调查的数据探索体育锻炼与虚弱的关系,展示界标分析的具体应用,以期促进其在队列研究中的应用,从而更准确地推断暴露与结局的因果效应。
英文摘要:
      Cohort study is one of the important research methods in analytical epidemiology because of its clear time sequence relationship, which is better than other observational studies in demonstrating causal association. However, screening diagnosis or other methods are often used to exclude the individuals with outcome events during the enrollment process of the subjects in cohort studies. The accuracy of screening diagnosis and the effectiveness of exclusion will affect the accuracy of the baseline status assessment of the subjects included in the study, which may lead to the causal time sequence reversal of exposure-outcome in the estimation of causal effect. Landmark analysis can be used to control reverse causality by excluding subjects with potentially unknown expose-outcome timing. In this paper, we describe the basic principles and analytical steps of landmark analysis, and use data from the Chinese Longitudinal Healthy Longevity Survey to explore the relationship between physical activity and frailty, and introduce the specific application of landmark analysis for the purpose of facilitating its application and inferring causal effects more accurately in cohort studies.
查看全文   Html全文     查看/发表评论  下载PDF阅读器
关闭