中国新型冠状病毒肺炎疫情再生系数评估

王莹¹ 尤心怡¹ 王奕诗¹,2 彭丽萍¹ 杜志成¹ Stuart Gilmour³ Daisuke Yoneoka³
顾蕊¹ 3 郝春¹,3 郝元涛¹,3 李聆华¹,3

王莹和尤心怡对本文有同等贡献
¹中山大学公共卫生学院，广州 510080；²圣路加国际大学公共卫生学院，东京 104-0045，日本；³中山大学全球卫生研究中心，广州 510275
通信作者；郝元涛，Email: haoyt@mail.sysu.edu.cn；李聆华，Email: lijinghua3@mail.sysu.edu.cn

【摘要】目的 目前湖北省的新型冠状病毒肺炎(COVID-19)确诊和疑似病例的数量仍在增加。国内外多个团队对疫情发展进行了模型预测，但结论并不统一。因此，开展本次疫情的预测模型研究，评估COVID-19的基本再生数(basic reproduction number, R₀)，对于评估病毒的传播能力以及一系列控制措施的效果具有重要意义。方法 收集从湖北省2020年1月17日到2月8日期间每天报告的确诊病例数等数据，分别采用指数增长方法(exponential growth, EG)、极大似然法(maximum likelihood estimation, ML)、序贯贝叶斯方法(sequential Bayesian method, SB)和时间相关基本再生数(time dependent reproduction numbers, TD)估计R₀值。结果 由观测病例数和4种方法预测的病例数拟合情况可知，EG方法拟合效果最优。EG方法估计COVID-19湖北省R₀的值为3.49 (95% CI: 3.42-3.58)。采取封城控制手段期间，EG方法估算R₀值为2.95 (95% CI: 2.86-3.03)。结论 在传染病流行初期，适合采用EG方法估算R₀。同时需要采取及时有效的控制措施，进一步降低COVID-19的传播速率。

【关键词】新型冠状病毒肺炎；基本再生数；传播速率

基金项目：国家自然科学基金(81803334, 71774178, 71974212, 81973150); 美国中华医学基金会(18-501); 国家科技重大专项(2018ZX1015004); 广东省省级科技计划(2017A020212006); 广州市科学(技术)研究专项(201607010331, 20160701368)
DOI: 10.3760/cma.j.cn112338-20200210-00086

Estimating the basic reproduction number of COVID-19 in Wuhan, China

Wang Ying¹, You Xinyi¹, Wang Yijing², Peng Liping¹, Du Zhicheng¹, Stuart Gilmour³, Daisuke Yoneoka³, Gu Rui¹, Hao Chun³, Hao Yuan Tao³, Li Jinghua³

Wang Ying and You Xinyi contributed equally to the article
¹School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; ²Graduate School of Public Health, St. Luke’s International University, Tokyo 104-0045, Japan; ³Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510275, China

Corresponding authors: Hao Yuan Tao, Email: haoyt@mail.sysu.edu.cn; Li Jinghua, Email: lijinghua3@mail.sysu.edu.cn

【Abstract】Objective The number of confirmed and suspected cases of the COVID-19 in Hubei province is still increasing. However, the estimations of the basic reproduction number of COVID-19 varied greatly across studies. The objectives of this study are 1) to estimate the basic reproduction number (R₀) of COVID-19 reflecting the infectiousness of the virus and 2) to assess the effectiveness of a range of controlling intervention. Method The reported number of daily confirmed cases from January 17 to February 8, 2020 in Hubei province were collected and used for model fit. Four methods, the exponential growth (EG), maximum likelihood estimation (ML), sequential Bayesian method (SB) and time dependent reproduction numbers (TD), were applied to estimate the R₀. Result Among the four methods, the EG method fitted the data best. The estimated R₀ was 3.49 (95% CI: 3.42-3.58) by using EG method. The R₀ was estimated to be 2.95 (95% CI: 2.86-3.03) after taking control measures. Conclusion In the early stage of the epidemic, it is appropriate to estimate R₀ using the EG method. Meanwhile, timely and effective control measures were warranted to further reduce the spread of COVID-19.
【Key words】 COVID-19; Basic reproduction number; Transmission rate

Fund programs: National Natural Science Foundation of China (81803334, 71774178, 71974212, 81973150); Chinese Medical Board of USA (18–301); National Science and Technology Major Project of China(2018ZX10715004); Science and Technology Planning Project of Guangdong Province (2017A020212006); Science and Technology Research Project of Guangzhou (201607010332, 201607010368)

DOI:10.3760/cma.j.cn112338-20200210-00086

2019年12月，中国湖北省武汉市发生不明原因肺炎疫情，流行病学调查发现，大部分病例与华南海鲜批发市场有关[1]，该市场存在出售野生动物的非法行为[2]。经检测，国家卫生健康委表示，收治的患者对常见的呼吸道病毒和细菌检测呈阴性，但对一种新型冠状病毒检测呈阳性[3]。患者常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等，重症患者中，病毒感染可导致肺炎、严重急性呼吸综合征、肾衰竭，甚至死亡。病毒分离后，研究者们对其进行基因组测序，WHO初步将新型冠状病毒所致肺炎命名为COVID-19[4]。

在“不明原因的病毒性肺炎”病原体初步判定为新型冠状病毒后，国家、省市专家组立即对COVID-19诊疗、监测等方案进行了修订和完善，于1月10日确认，武汉市已有累计41例病例被确诊为新型冠状病毒感染，截至2月8日24时，全国31个省份累计确诊病例已上升至37198例[5]，累计死亡病例811例，确诊病例数远超2003年SARS感染病例数。截止目前，仍没有对于COVID-19的特异治疗方法。

目前，全国范围内确诊和疑似病例的数量仍在增加。基本再生数（basic reproduction number, R_0）是决定传染病在传播率的最重要参数，是指没有干预的情况下，全部是易感人群的环境中，平均一个患者可以传染的人数[6]。及时准确评估COVID-19的R_0对于评估病毒的传播能力、预测未来流行趋势以及调整一系列控制措施具有重要意义。但目前相关R_0的研究均基于发病早期的疫情通报数据计算得出，早期报告的病例数据可能存在较大波动，由此计算得出的数值可能存在不稳定性，同时自1月23日武汉市人民政府宣布城市各类交通工具出行限制后，COVID-19的传播率可能发生了一定变化。因此，本研究旨在利用疫情通报相对稳定后的病例数据计算COVID-19的R_0值，并且对政府控制措施实施前后R_0值的变化进行评估，将所得结果与已有相关研究的结果进行比较分析。

资料与方法

本研究收集2020年1月17日到2月8日24时期间国家卫生健康委员会报告的湖北省每天确诊COVID-19病例数等数据（表1）。根据L1等[1]对COVID-19潜伏期的分析显示潜伏期均值为5.2（95%CI:4.1–7.0）。分别采用指数增长法（exponential growth, EG）、极大似然法（maximum likelihood estimation, ML）、序贯贝叶斯法（sequential Bayesian method, SB）和时间相关基本再生数（time dependent reproduction numbers, TD）计算得R_0[7]。此外，湖北省各个城市分别于1月23–24日开始实施封城措施，本研究也计算了封城控制期间R_0的估计值。

EG方法通过暴发早期的发病人数指数增长率为时间分布来估算R_0值[8]。计算公式：

$$R_0 = \frac{1}{M(–r)}$$

其中M是用于生成离散时间分布的矩量母函数，r表示新病例数的指数增长率。

ML方法通过各个时间点报告的发病数以及时间来估算R_0值[9]。计算公式：

$$LL(R) = \sum_{n=1}^{N} \log \left(\frac{\mu R_{n}}{N!} \right)$$

其中$R = R_0 R_{-i}$，其中N_i表示时间点i的发病人数，t_i表示世代时间分布，i表示不同的时间点。

SB方法通过感染期的平均持续时间来估算R_0值，并且每一时间点R_0的先验分布都是上一时间的后验分布[10]，在$t+1$时刻的发病数$N_{n,t}$近似于$N_{0,t}e^{-\lambda t}$的泊松分布，其中γ表示感染期的平均持续时间，计算公式：

$$P(R | N_0, \cdots, N_{n,t}) = \frac{P(N_{n,t} | R, N_0, \cdots, N_{n-1}) P(R | N_0, \cdots, N_{n-1})}{P(N_0, \cdots, N_{n-1})}$$

TD方法通过计算所有符合观察实际的传播网络的传播情况来估算R_0值[11]。在t时发病的病例i是由在$t-1$时发病的病例j传染的概率为$P_j = \frac{N_{j,t} \lambda}{\sum_{t=1}^{t-1} N_{j,t}}$，病例$j$的有效再生数为$R_j = \frac{\sum_{t=1}^{t-1} N_{j,t}}{\sum_{t=1}^{t-1} N_{j,t}}$，所以同一日期发病的所有病例的平均再生数为$R_t = \frac{1}{N_t} \sum_{j=1}^{N_t} R_j$。其中SB及TD两个方法，
本研究均采用疫情爆发初期所有时间点的有效再生数的平均值来估计 R_0。此处理方法也曾应用于其他传染性疾病，例如SARS, H1N1流感[11-12]。故

结 果

根据湖北省1月17日到2月8日期间每天确诊的COVID-19病例数（表1），EG计算得 $R_0 = 3.49$ (95% CI: 3.42 - 3.58); ML计算得 $R_0 = 2.99$ (95% CI: 2.93 - 3.06); SB和TD方法计算得 $R_0 = 2.80$ (95% CI: 2.42 - 3.15) 和 $R_0 = 4.48$ (95% CI: 4.26 - 4.71)。由观测到的病例数和4种方法预测病例数的拟合情况（图1）可知，EG方法的拟合效果最优。

湖北省的各个城市分别于2020年1月23-24日开始实施封城措施，收集1月24日开始到2月8日期间每天确诊的COVID-19病例数，计算有效控制阶段 R_e 的估计值。EG计算得 $R_e = 2.95$ (95% CI: 2.86 - 3.03); ML计算得 $R_e = 3.16$ (95% CI: 3.09 - 3.23); SB和TD方法计算得 $R_e = 2.65$ (95% CI: 2.45 - 2.85) 和 $R_e = 3.61$ (95% CI: 3.52 - 3.70)。由观测病例数和4种方法预测病例数的拟合情况（图2）可知，EG方法的拟合效果最优。

讨 论

全国范围内COVID-19的病例数在持续增加。本研究收集1月17日至2月8日期间国家卫生健康委报告的湖北省每天确诊病例数等数据，采用EG、ML、SB和TD方法评估COVID-19的 R_0 值，评估COVID-19的传播速率，为疾病的预防和控制提供科学依据。

湖北省多个城市分别于1月23-24日开始实施封城措施，1月24-3月2日封城期间，EG方法估算COVID-19的 R_0 值为2.95 (95% CI: 2.86 - 3.03)，相较于其他国家有明显的降低，同时也低于Wallinga等[11]估算重症急性呼吸综合征SARS的 R_0 值（3.1 - 4.2）。尽管在湖北省采取封城措施之前，有一部分人已经离

表1 1月20日至2月7日24时全国COVID-19疫情情况

日期	确诊病例	死亡病例	确诊病例	死亡病例	确诊病例	硕		确诊病例	死亡病例		
------	---------	---------	---------	---------	---------	-----			---------		
1月21日	72	270	3	6	5	21	0	0	77	291	
1月22日	105	375	3	9	44	65	0	0	149	440	
1月23日	69	444	8	17	62	127	0	0	131	571	
1月24日	105	549	7	24	154	281	1	1	259	830	
1月25日	180	729	15	39	264	558	1	2	444	1287	
1月26日	323	1052	13	52	365	923	2	4	688	1975	
1月28日	371	1423	24	76	398	1321	0	4	769	2744	
1月29日	1291	2714	24	100	480	1801	2	6	1771	4515	
1月30日	840	3554	25	125	619	2420	1	7	1459	5794	
1月31日	1032	4586	37	162	705	3125	1	8	1737	7711	
1月32日	1300	5806	42	204	742	3886	1	9	1982	6929	
1月33日	1347	7153	45	249	755	4638	1	10	2102	11791	
1月34日	1921	9074	45	294	669	5306	0	10	2590	14380	
1月35日	2103	11177	56	350	726	6028	1	11	2829	17205	
1月36日	2345	13522	64	414	890	6916	0	11	3235	20438	
1月37日	3156	16678	65	479	731	7646	0	11	3887	32432	
1月38日	2987	19665	70	549	707	8353	3	14	3694	28018	
1月39日	2447	22112	69	618	696	9049	4	18	3143	31161	
1月40日	2841	24953	81	699	558	9593	5	23	3399	34546	
1月41日	2147	27001	88	780	509	10098	8	31	2656	37198	
开了湖北，使城封的有效性降低，但是该措施在一定程度上有效减少了湖北省内各市区之间的感染以及省外的新增感染。在城封控制期间，公众的综合行为发生改变，开始佩戴口罩，减少外出等等。同时各专业技术人员，宣传系统和媒体大力开展科普宣传，提高了公众健康意识和自我防护能力，相关部门对疑似患者采取隔离措施及患者做好隔离治疗，进一步降低了COVID-19的传播速度。

本研究采用不同方法计算得到湖北省COVID-19的R_0值，评估了COVID-19传播能力，且对城封控制措施实施前后的R_0值进行了对比。在传染病流行初期，适合采用EG方法估算的R_0，采用城封措施后，R_0值相较于之前有明显的降低，说明城封的控制手段有效降低了病毒传播速率。该研究为进一步的疫情分析提供了重要参数，包括疫情控制措施的实施效果的评价，未来疫情流行趋势的预测等，同时也为控制措施的调整提供科学依据。

利益冲突 所有作者均声明不存在利益冲突

参考文献

