河南省 2009－2010年出血性大肠埃希菌 O157
毒力基因分布与脉冲场凝胶电泳分型研究

赵嘉咏 熊玉姣 张白帆 李孟磊 苏佳 夏胜利 黄学勇 许浒利

【关键词】出血性大肠埃希菌 O157；脉冲场凝胶电泳；Distribution of virulence genes and PFGE molecular typing of Enterohemorrhagic Escherichia coli O157 in Henan from 2009 to 2010；Zhao Jiayong, Yu Yujiao, Zhang Baifan, Su Jia, Xing Shengli, Huang Xueyong, Xu Bianli. Henan Provincial Center for Disease Control and Prevention, Zhengzhou 450016, China

This work was supported by grants from the National Science and Technology Major Project of China (No. 2012ZX10004201, No. 2012ZX10004203).

【Key words】Enterohemorrhagic E. coli O157; Pulsed field gel electrophoresis

肠出血性大肠埃希菌（EHEC）是致泻性大肠埃希菌的一个亚型，主要致病菌株为 O157:H7。本研究对分离自河南省病例、家禽家畜粪便及食品等环境的 EHEC O157 进行病原学与分子生物学检测、分型，了解其病原学特点，为相关疾病的监测、暴发预警与溯源提供数据。

1. 菌株来源。2009—2010年河南省腹泻病多病源监测系统中郑州（登封、安阳）与商丘市睢县 2 个监测哨点疾病预防控制中心（CDC）收集并分离流感病例、家禽家畜粪便及食品的 62 株 EHEC O157，其中患者粪便来源 80 株，食源粪便来源 8 株，家禽家畜粪便来源 46 株。

2. 研究方法。

（1）分离培养与鉴定：5g 病例或动物粪便标本接种于 45 ml mEC 肉汤中，标本取 25 g 磨碎，接种于 225 ml mEC 肉汤中，37℃ 增菌培养 6 h；EHEC O157 免疫磁珠富集后接种 Chromagar O157 平板，37℃ 培养 16～18 h，挑取疑似 EHEC 菌落（紫红色或蓝灰无色半透明、单个、光滑、湿润）API20E 系统生化鉴定后转营养琼脂平板 37℃ 过夜培养后进行 O157、H7 两种单克隆抗体玻片凝集试验，阳性菌株进行 PCR 鉴定与毒力基因检测。

（2）多重 PCR 检测：采用热启动法设计扩增模板，引物 5 对针对 EHEC O157 保守与毒力基因设计。扩增产物进行 1.5%琼

DOI:10.3760/cma.j.issn.0254-6450.2015.11.028

基金项目：国家科技重大专项（2012ZX10004201, 2012ZX10004203)

作者单位：450016 郑州，河南省疾病预防控制中心

通信作者：许浒利, Email: xuhbl@hncdc.com.cn

脂糖凝胶电泳分析[1]。

（3）PFGE 分型：PCR 产物经限制性内切酶 Xba I (75 U) 37℃ 酶切 2 h 后进行电泳。电泳参数：分子质量 30～600 kb，脉冲时间 2.16～54.17 s，电场角度 120°，电泳时间 19 h (1×TBE, 14℃). 胶块用 GeRed 试剂染色后凝胶成像仪去饱和成像。BioNumerics 6.0 软件分析（UPGMA, PT 1.5%）。

3. 结果。

（1）EHEC 的鉴定：64 株 EHEC 经血清学凝集试验鉴定均为 EHEC O157(++)；H7(−)。2 株携带志贺毒素 1 型 (stx1) 毒力基因，11 株携带志贺毒素 2 型 (eaeA) 与索氏素(hlyA) 毒力基因，其余 49 株为非产毒菌株。2 株 stx1 毒力基因菌株分离自牛粪，3 株 eaeA+hlyA 毒力基因菌株分离自病例，其中 2 株分离自男性(0.5 ~ 1 岁)，1 株分离自女性(25 岁)；另外 8 株 eaeA+hlyA 毒力基因菌株分离自家禽家畜粪便；非产

毒型 O157 菌株分离自病例(3 株)、食品(8 株)、家禽家畜粪便(38 株)，见表 1。

表 1 EHEC O157 PCR 检测毒力基因

<table>
<thead>
<tr>
<th>毒力基因</th>
<th>产毒株数</th>
</tr>
</thead>
<tbody>
<tr>
<td>eaeA</td>
<td>28</td>
</tr>
<tr>
<td>hlyA</td>
<td>28</td>
</tr>
<tr>
<td>eaeA+hlyA</td>
<td>28</td>
</tr>
<tr>
<td>stx1</td>
<td>28</td>
</tr>
<tr>
<td>stx2</td>
<td>28</td>
</tr>
</tbody>
</table>

（2）PFGE 分型：62 株 EHEC 为 49 种带型，命名为 EHI～EH49，相似度为 62.3%~100.0%，带型内包含菌株数为 1～4 株。EHI 与 EH27 两种带型毒力基因型别均为 eaeA+hlyA；EH4/EH6/EH7/EH23/EH24/EH40/EH47 带型菌株分离自家禽家畜粪便，均为非产毒型 EHEC O157；EH22 内 1 株携带 eaeA+hlyA 基因，1 株为非产毒型 EHEC O157；EH41 带型毒力谱较复杂；2 株菌携带 stx1 志贺毒素，1 株菌携带 eaeA+hlyA 毒力基因，1 株菌携带 eaeA。从整体来看，EHEC O157 的核酸序列多态性更多，带型聚合性更分散，分离自不同监测点与不同样本类型的菌株带型相似度高低（<80%），人源与食品，环境源菌株从宏、微观角度看未呈
现聚集性，与毒力基因的关联性也不强（图1）。

3. 讨论：近年来，由EHEC引起的腹泻爆发逐步受到全球许多国家公共卫生机构的重视。研究表明，牛、鸡、羊、犬、猪等动物及其制品作为传染源的作用尤其重要。从本研究结果看，河南省家畜家禽的带菌率相当高，动物粪便分离株的比重约占77.4%，猪产志贺毒素sta1的菌株来源牛粪，11菌株表型eaeA/hlyA的菌株则分布在家禽、家畜粪便中和肉类制造中。同河南省和周边省份历史监测数据相比，河南省EHEC O157仍然是以家禽家畜为主要感染宿主，带菌率最高的宿主动物为牛，猪、家禽携带的志贺样毒力基因中由sta2变为sta1[4]。以EHEC为代表的食源性疾病防控重点仍是畜牧业/养殖业的饲养、屠宰和食品加工等环节。从病例看，<10岁低龄儿童是EHEC感染高发人群，需要予以重点关注。

从PFGE带型看，大多数带型间既无呈现较高的相似度，也未发现有优势带型与聚集现象。人源菌株带型各自独立分布，未发现与动物源和食品分离菌株一致或高度相似带型。同河南省历史菌株分布结果相比，带型种类由9种增加到49种，多态性大大增加。考虑到食源性疾病传播模式的特点，对动物源和人源菌株关联度及疾病传播链的追溯还需

图1 EHEC O157的PFGE聚类分析
贵州省空肠弯曲菌临床分离株的多位点序列分型分析

韦小瑜 游学 田克诚 李世军 唐光鹏 王定明

【关键词】 空肠弯曲菌；多位点序列分型

Multilocus sequence typing of Campylobacter jejuni clinical isolates from Guizhou province

Wei Xiaoyue, You Lyu, Tian Kecheng, Li Shijun, Tang Guanggen, Wang Dingming. Institute of Infectious Disease Control and Prevention, Guizhou Provincial Center for Disease Control and Prevention, Guiyang 550004, China

Corresponding author: Wei Xiaoyue. Email: weixiyue@foxmail.com

This work was supported by grants from the National Science and Technology Major Project of China (No. 2012ZX10004-212) and Science and Technology Foundation of Guizhou Provincial Center for Disease Control and Prevention (No. 2013-E2-2).

【Key words】 Campylobacter jejuni; Multilocus sequence typing

空肠弯曲菌(Campylobacter jejuni)是引起人类急性腹泻常见的人兽共患病原菌。贵州省从2010年开始对感染性腹泻病例中空肠弯曲菌感染进行监测,结果显示,其检出率仅次于沙门菌[1],提示空肠弯曲菌也是贵州省引起腹泻的主要病原菌之一,2012年贵州省首次从菌血症患儿血液标本中检出空肠弯曲菌[2]。因此加强空肠弯曲菌的监测及了解其病

DOI: 10.3760/cma.j.issn.0254-6450.2015.11.029

基金项目：国家科技重大专项(2012ZX10004-212)；贵州省疾病预防控制中心科学技术基金(2013-E2-2)

作者单位：550004 贵阳,贵州省疾病预防控制中心传染科预防控制所

通信作者:韦小瑜, Email: weixiyue@foxmail.com

通过优化PFGE参数,变更限制性多态位点或结合其他分子分型技术进一步验证和研究。

参考文献

（收稿日期:2015-04-26）

（本文编辑:万玉立）