山东省2006—2014年秋冬型恙虫病
空间流行病学分析

杨慧 毕振旺 宦增强 顾丽 赵仲堂
250012 济南,山东大学公共卫生学院流行病学系(杨慧、顾丽、赵仲堂); 250014 济南,山东省疾病预防控制中心细菌所(毕振旺、宦增强)

通信作者:赵仲堂,Email:ztzhaosdu.edu.cn; 毕振旺,Email:bzwj163.com

DOI:10.3760/cma.j.issn.0254-6450.2016.05.019

【关键词】恙虫病;秋冬型;流行特征;空间流行病学

基金项目:国家自然科学基金(81273133)

Spatial analysis of autumn-winter type scrub typhus in Shandong province, 2006—2014 Yang
Hai, Bi Zhenwang, Kou Zengqiang, Zheng Li, Zhao Zhongtang
Department of Epidemiology, School of Public Health, Shandong University, Jinan 250012, China (Yang
Hai, Zheng L, Zhao ZT); Institute for Bacterial Infectious Disease Control and Prevention, Shandong
Provincial Center for Disease Control and Prevention, Jinan 250014, China (Bi ZW, Kou QZ)
Corresponding authors: Zhao Zhongtang, Email:ztzhaosdu.edu.cn; Bi Zhenwang, Email: bzuw@163.com

【Objective】To discuss the spatial-temporal distribution and epidemic trends of autumn-winter type scrub typhus in Shandong province, and provide scientific evidence for further study for the prevention and control of the disease. Methods The scrub typhus surveillance data during 2006—2014 were collected from Shandong Disease Reporting Information System. The data was analyzed by using software ArcGIS 9.3 (ESRI Inc., Redlands, CA, USA), GeoDa 0.9.5-i and SatScan 9.1.1. The Moran’s I, log-likelihood ratio (LLR), relative risk (RR) were calculated and the incidence choropleth maps, local indicators of spatial autocorrelation cluster maps and space scanning cluster maps were drawn. Results A total of 4 453 scrub typhus cases were reported during 2006—2014, and the annual incidence increased with year. Among the 17 prefectures (municipality) in Shandong, 13 were affected by scrub typhus. The global Moran’s I index was 0.501 5 (P<0.01). The differences in local Moran’s I index among 16 prefectures were significant (P<0.01). The “high—high” clustering areas were mainly Wulian county, Lanzhan district and Juxian county of Rizhao, Xintai county of Tai’ an, Gangcheng and Laicheng districts of Laiwu, Yiyuan county of Zibo and Mengyin county of Linyi. Spatial scan analysis showed that an eastward moving trend of high-risk clusters and two new high-risk clusters were found in Zaozhuang in 2014. The centers of the most
likely clusters were in the south central mountainous areas during 2006–2010 and in 2012, eastern hilly areas in 2011, 2013 and 2014, and the size of the clusters expanded in 2008, 2011, 2013 and 2014. One spatial-temporal cluster was detected from October 1, 2014 to November 30, 2014, the center of the cluster was in Rizhao and the radius was 222.34 kilometers. **Conclusion** A positive spatial correlation and spatial agglomerations were found in the distribution of autumn-winter type scrub typhus in Shandong. Since 2006, the epidemic area of the disease has expanded and the number of high-risk areas has increased. Moreover, the eastward moving and periodically expanding trends of high-risk clusters were detected.

Key words Scrub typhus; Autumn-winter type; Epidemic characteristics; Spatial epidemiology

Fund program: National Natural Science Foundation of China (81273133)

恙虫病是由恙虫病东方体感染引起的一种自然疫源性疾病，鼠类为主要储存宿主，经恙螨幼虫叮咬而传播。恙虫病广泛流行于东南亚地区，全球每年估计发生 100 万病例[1]。我国恙虫病原仅在长江以南地区流行，为夏季型。自 1986 年山东省临沂县发现恙虫病暴发以来，该病在纬度 31°以北地区迅速蔓延。迄今，除山东省外，天津、北京、山西、河南、江西、江苏等地均有该病流行的报告，流行特征为秋冬型。近年来，我国北方地区秋冬型恙虫病流行区域不断扩大，强度不断增加，但目前与该病流行相关的许多问题尚不清楚。为此本文应用制图、空间自相关分析、空间时点与空间扫描技术探讨山东省秋冬型恙虫病的时空分布特征和流行趋势，为其预防控制提供参考。

资料与方法

1. 资料来源：恙虫病监测数据源自 2006～2014 年山东省疾病报告信息系统。人口学资料来自 2006～2014 年山东省各市统计年鉴。病原诊断标准按中国 CDC 恙虫病监测标准[2]。

2. 分析方法：

（1）描述性分析：根据监测数据的发病率资料，运用地理信息系统（GIS）平台绘制发病率地区分布图，对恙虫病的空间分布进行可视化描述。发病率地区分布图用 ArcGIS 9.3 软件（ESRI Inc., Redlands, CA, USA）制作。

（2）空间自相关分析：以全居空间自相关分析 Moran’s I 指标探查整个研究区域内的空间集聚模式。数据采用 GeoDa 0.9.5～i 软件处理，显著性检验定为α = 0.05。Moran’s I 的显著性由 Monte Carlo 随机化检验评估，检验次数设置为 999 次。Moran’s I 的范围介于 -1～1 之间。Moran’s I > 0 时，表示疾病存在正向空间自相关；Moran’s I < 0 时，表示疾病存在负向空间自相关。Moran’s I 的值越接近 1 或-1，表明空间自相关性越强[3]。

局域空间自相关分析通过局域 Moran’s I 与局

域 型 空 间 自 相 关（local indicators of spatial autocorrelation，LISA）聚类图实现。LISA 聚类图上共有 4 种局部空间聚集模式：“高-高”（H-H）聚集、“低-低”（L-L）聚集、“高-低”（H-L）聚集。其中，“高-高”聚集、“低-低”聚集对正于全局相关指标中的正向空间自相关，“高-低”聚集、“高-低”聚集对正于全局相关指标中的负向空间自相关。利用 LISA 模型进行假设检验，若 P<0.05，即推断恙虫病病例的空间分布具有自相关性。

(3) 空间扫描及时空扫描分析：根据病例发生地的经纬度编码，建立 GIS 数据库。空间扫描及时空扫描分析以空间动态窗口扫描统计为基础，基于 Poisson 模型，应用 SatScan 9.1.1 软件，采用 1：100000 的多边形地图在县级水平上分析恙虫病的时空集聚性。以圆形或椭圆形窗口表示研究区域的地理范围，以高度表示时间。假设在没有协变量存在的情况下，期望病例数与人口数成正比，即扫描窗口内外 RR 值大小相同。随着扫描窗口的变化，采用对数似然比（LLR）检验计算所有窗口内外区域之间的发病率差异，寻找其中 LLR 最大的窗口为最有可能存在聚集性的区域。计算该区域的 RR 值，并检验差异有无统计学意义，推断确定聚集区域[6-7]。本研究最大空间群集设置为总人口的 50%。Monte Carlo 随机化检验评估检验次数设置为 999 次，统计学检验水平设为 0.05。

结果

1. 描述性分析：2006～2014 年山东省共报告恙虫病 4453 例，发病率由 2006 年的 0.23/10 万上升至 2014 年的 1.53/10 万，发病率呈逐年上升趋势，发病地区逐年增多，高发地区有向东移动并逐渐扩大的趋势（图 1）。全省 17 个地(市)中有 13 个发现恙虫病病例，其中枣庄市自 2013 年开始出现报告病例，并由 2013 年的 10 例迅速增加为 2014 年的 124 例。

2. 空间自相关分析：2006～2014 年山东省恙虫
病平均发病率的全局 Moran’s $I=0.501,5, Z=8.764 (P<0.01)$, 表明其在全省范围内存在正向空间自相关性。LISA 聚集群显示 H-H 聚集群主要地区为日照市五莲县、岚山区和莒县, 泰安新泰市, 莱芜市莱城区和钢城区, 潍坊市沂源县与临沂市蒙阴县（图2）。2006—2014 年各年发病率的自相关分析结果见表1，全局 Moran’s I 在 0.05 的检验水准下均有统计学意义。

图2 2006—2014年山东省恙虫病年均发病率LISA聚集群图

时空扫描结果发现 2014 年 10 月 1 日至 2014 年 11 月 30 日以日照东港区为中心，辐射半径为 222.34 km 的聚集群，此聚集群包含 64 个区（县），$RR=38.72 (P<0.01)$。

表1 2006—2014年山东省恙虫病年均发病率自相关分析

<table>
<thead>
<tr>
<th>年份</th>
<th>Moran’s I</th>
<th>Z值</th>
<th>P值</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>0.174</td>
<td>3.424</td>
<td>0.005</td>
</tr>
<tr>
<td>2007</td>
<td>0.280</td>
<td>5.155</td>
<td>0.001</td>
</tr>
<tr>
<td>2008</td>
<td>0.276</td>
<td>4.918</td>
<td>0.001</td>
</tr>
<tr>
<td>2009</td>
<td>0.320</td>
<td>5.971</td>
<td>0.001</td>
</tr>
<tr>
<td>2010</td>
<td>0.370</td>
<td>6.562</td>
<td>0.001</td>
</tr>
<tr>
<td>2011</td>
<td>0.486</td>
<td>9.549</td>
<td>0.001</td>
</tr>
<tr>
<td>2012</td>
<td>0.529</td>
<td>10.419</td>
<td>0.001</td>
</tr>
<tr>
<td>2013</td>
<td>0.339</td>
<td>6.239</td>
<td>0.001</td>
</tr>
<tr>
<td>2014</td>
<td>0.438</td>
<td>7.708</td>
<td>0.001</td>
</tr>
</tbody>
</table>

讨论

本文采用空间流行病学分析方法探讨山东省 2006—2014 年秋冬型恙虫病的时空分布特征，结果发现恙虫病流行地区呈逐年增多。山东省自 1986 年

表2 2006—2014年山东省恙虫病空间扫描分析

<table>
<thead>
<tr>
<th>年份</th>
<th>聚集群类型</th>
<th>聚集群中心</th>
<th>辐射半径(km)</th>
<th>区(县)数</th>
<th>实际例数</th>
<th>期望例数</th>
<th>RR值</th>
<th>LR值</th>
<th>P值</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>一级</td>
<td>日照县</td>
<td>92.63</td>
<td>23</td>
<td>155</td>
<td>38.64</td>
<td>12.06</td>
<td>151.46</td>
<td><0.01</td>
</tr>
<tr>
<td>2007</td>
<td>一级</td>
<td>莱芜市</td>
<td>1</td>
<td>16</td>
<td>24.8</td>
<td>6.88</td>
<td>16.73</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>一级</td>
<td>莱芜市</td>
<td>72.06</td>
<td>1125</td>
<td>22.85</td>
<td>10.55</td>
<td>140.16</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>一级</td>
<td>聊城县</td>
<td>163.46</td>
<td>324</td>
<td>151.66</td>
<td>16.86</td>
<td>194.29</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>一级</td>
<td>高密市</td>
<td>34.68</td>
<td>4</td>
<td>97</td>
<td>7.73</td>
<td>21.17</td>
<td>177.44</td>
<td><0.01</td>
</tr>
<tr>
<td>2011</td>
<td>一级</td>
<td>济南市</td>
<td>34.68</td>
<td>4</td>
<td>94</td>
<td>8.30</td>
<td>17.71</td>
<td>160.18</td>
<td><0.01</td>
</tr>
<tr>
<td>2012</td>
<td>一级</td>
<td>威海市</td>
<td>199.70</td>
<td>55</td>
<td>404</td>
<td>184.45</td>
<td>12.21</td>
<td>234.27</td>
<td><0.01</td>
</tr>
<tr>
<td>2013</td>
<td>一级</td>
<td>莱芜市</td>
<td>48.00</td>
<td>6</td>
<td>223</td>
<td>23.67</td>
<td>14.20</td>
<td>338.99</td>
<td><0.01</td>
</tr>
<tr>
<td>2014</td>
<td>一级</td>
<td>莱芜市</td>
<td>210.63</td>
<td>59</td>
<td>474</td>
<td>222.03</td>
<td>5.63</td>
<td>210.21</td>
<td><0.01</td>
</tr>
</tbody>
</table>

2015—2014年山东省恙虫病年均发病率自相关分析

<table>
<thead>
<tr>
<th>年份</th>
<th>Moran’s I</th>
<th>Z值</th>
<th>P值</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>0.174</td>
<td>3.424</td>
<td>0.005</td>
</tr>
<tr>
<td>2016</td>
<td>0.280</td>
<td>5.155</td>
<td>0.001</td>
</tr>
<tr>
<td>2017</td>
<td>0.276</td>
<td>4.918</td>
<td>0.001</td>
</tr>
<tr>
<td>2018</td>
<td>0.320</td>
<td>5.971</td>
<td>0.001</td>
</tr>
<tr>
<td>2019</td>
<td>0.370</td>
<td>6.562</td>
<td>0.001</td>
</tr>
<tr>
<td>2020</td>
<td>0.486</td>
<td>9.549</td>
<td>0.001</td>
</tr>
<tr>
<td>2021</td>
<td>0.529</td>
<td>10.419</td>
<td>0.001</td>
</tr>
<tr>
<td>2022</td>
<td>0.339</td>
<td>6.239</td>
<td>0.001</td>
</tr>
<tr>
<td>2023</td>
<td>0.438</td>
<td>7.708</td>
<td>0.001</td>
</tr>
</tbody>
</table>
首次在蒙阴县发现该病以来，流行地区蔓延迅速。17个地（市）中有13个已发现该病流行，且流行强度不断增加，是秋冬型恙虫病的典型流行区域^{[8]。}近年来研究发现，在山东省内检测出恙虫病东方体（Ori）的基
因型呈多样性特点^{[9]，}，秋冬型恙虫病原体基因变异活跃是否与该病流行特征有关还有待深入探讨。

本文结果显示，山东省恙虫病的发生呈非随机分布，Moran’
’s I值均为正值，说明2006—2014年该病存在正向空间自相关性，即某一空间区域的发病率高（或低），其相邻区域相应的发病率也高（或低）。LISA聚类图显示大多数发病聚集区位于山区和丘陵，提示该病在山东省具有空间聚集性。山区和丘陵地区植被等自然环境，有利于鼠类和恙螨的孳生繁
殖^{[10-11]}。从空间扫描聚类图可以看出空间聚集区
从应南部山区向东部丘陵地区移动，聚集体面积大
约2—3年扩大一次。这种现象可能与降水量等气
象因素有关；此外，农业、林业基本建设与发展也
can对鼠类和恙螨的栖息环境产生影响^{[12-13]}。

空间扫描结果发现枣庄市为秋冬型恙虫病新流行地区。2013年之前枣庄地区没有报告病例，最近
两年开始出现并迅速增加，空间扫描聚类图发现有
2个空间聚集区在该地区形成。枣庄地区是山东省
降水量最丰富的地区之一，日照时间充足，这些条件
可为虫媒传染病的发生和传播提供有利条件，从而
促使恙虫病新疫源地的形成和扩散。

利益冲突 无

参考文献

（收稿日期：2015.10.29）
（本文编辑：张林东）