Abstract
黄丽红,赵杨,魏永越,陈峰.如何控制观察性疗效比较研究中的混杂因素:(三)混杂因素控制的敏感性分析方法[J].Chinese journal of Epidemiology,2019,40(12):1645-1649
如何控制观察性疗效比较研究中的混杂因素:(三)混杂因素控制的敏感性分析方法
How to adjust confounders in studies on observational comparative effectiveness: (3) approaches on sensitivity analysis for confounder adjustment
Received:March 18, 2019  
DOI:10.3760/cma.j.issn.0254-6450.2019.12.026
KeyWord: 观察性疗效比较研究  混杂  控制  敏感性分析方法
English Key Word: Observational comparative effectiveness research  Confounder  Adjustment  Sensitivity analysis
FundProject:国家自然科学青年基金(81903407)
Author NameAffiliationE-mail
Huang Lihong Department of Biostatistics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China huang.lihong@zs-hospital.sh.cn 
Zhao Yang Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China  
Wei Yongyue Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China  
Chen Feng Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China  
Hits: 6377
Download times: 2082
Abstract:
      观察性疗效比较研究中混杂在所难免,在利用一些统计分析方法对已测量或未测量混杂因素加以控制后,是否消除了混杂的影响不得而知,此时需进行敏感性分析。本文介绍混杂因素处理中的敏感性分析方法。基于不同的研究,敏感性分析思路各不相同,对于已测量混杂因素可采用传统的敏感性分析方法,对于未测量混杂因素目前理论相对系统的方法主要有混杂函数法、边界因子法和倾向性评分校正法,另外Monte Carlo敏感性分析和Bayes敏感性分析也是近年来备受热议的方法。当敏感性分析结果与主要分析结果一致时,无疑提高了研究结论的可靠性。
English Abstract:
      Confounders are difficult to avoid in studies on observational comparative effectiveness. It is often unclear whether the confounders have been completely eliminated after controlling the measured or unmeasured potential confounding effects or if sensitivity analysis is needed when using the specific statistical methods, under given circumstances. This manuscript summarizes and evaluates the confounding sensitivity analysis methods. Based on different studies, sensitivity analyses need to use different approaches. The traditional sensitivity analysis can be applied for the measured confounders. Currently, the relatively systematic sensitivity analyses for unmeasured confounders would include confounding function, bounding factor and propensity score calibration. Additionally, more investigations are associated with Monte Carlo and Bayesian sensitivity analysis. Reliability of the research conclusion thus may largely be improved when the sensitivity analysis results are consistent with the main analysis.
View Fulltext   Html FullText     View/Add Comment  Download reader
Close