侯旭宏,贾伟平,包玉倩,陆俊茜,吴元民,顾惠琳,左玉华,姜素英,项坤三.代谢综合征组分的正交因子分析[J].中华流行病学杂志,2008,29(3):297-301 |
代谢综合征组分的正交因子分析 |
Orthogonal factor analysis on metabolic syndrome |
收稿日期:2007-11-23 出版日期:2014-09-15 |
DOI: |
中文关键词: 代谢综合征 正交因子分析 |
英文关键词: Metabolic syndrome Orthogonal factor analysis |
基金项目:上海市科委重大项目基金资助(04DEl9501) |
作者 | 单位 | E-mail | 侯旭宏 | 上海市糖尿病临床医学中心, 上海市糖尿病研究所, 上海交通大学附属第六人民医院 200233 | | 贾伟平 | 上海市糖尿病临床医学中心, 上海市糖尿病研究所, 上海交通大学附属第六人民医院 200233 | wpjia@yahoo.com | 包玉倩 | 上海市糖尿病临床医学中心, 上海市糖尿病研究所, 上海交通大学附属第六人民医院 200233 | | 陆俊茜 | 上海市糖尿病临床医学中心, 上海市糖尿病研究所, 上海交通大学附属第六人民医院 200233 | | 吴元民 | 上海市华阳街道社区卫生服务中心 | | 顾惠琳 | 上海市华阳街道社区卫生服务中心 | | 左玉华 | 上海市华阳街道社区卫生服务中心 | | 姜素英 | 上海市华阳街道社区卫生服务中心 | | 项坤三 | 上海市糖尿病临床医学中心, 上海市糖尿病研究所, 上海交通大学附属第六人民医院 200233 | |
|
摘要点击次数: 3355 |
全文下载次数: 1392 |
中文摘要: |
结合代谢综合征(MS)组分的正交因子分析实例,介绍正交因子分析模型的原理及其在医学研究中的应用.使用1998-2001年上海社区人群MS患病率的现况研究资料,选取35~65岁资料完整的1877例女性作为研究对象,使用SPSS统计软件对MS相关组分进行正交因子分析,并计算因子得分.因子分析提取的前6个互不相关的公共因子可以基本反映原始指标86%的信息.通过正交旋转后6个公共因子的实际意义很清晰,依次主要反映肥胖、血压、血糖、胰岛素、TG和HDL-C指标的信息.根据给出的因子得分矩阵计算个体各因子得分及总得分.结果表明,MS的同一组分(除血脂外)内的变量呈高度相关性,但不同组分间虽有统计学关联,但非高度相关.正交因子分析的价值在于探查有高度相关关系的变量群,进而为探究其共同的潜在病理生理机制提供线索. |
英文摘要: |
To elucidate the principal of orthogonal factor analysis, using an example of factor analysis of metabolic syndrome. The basic structures and the fundamental concepts of orthogonal factor analysis were introduced and data involving 1877 women aged of 35-65 years,selected from a cross-sectional study,which was conducted in 1998一2001 in Shanghai,were included in this study. Factor analysis was carried out using principle components analysis with Varimax orthogonal rotation of the components of the metabolic syndrome. The different components of the metabolic syndrome were not linked closely with the other components and loaded on the six different factors,which mainly reflected by the variables of obesity, blood pressure, plasma glucose, plasma insulin, triglycerides and IIDL-cholesterol respectively. Six major factors of the metabolic syndrome were uncorrelated with each other and explained 86% of the variance in the original data. The factor score and total factor score for the individual could be obtained according to the component score coefficient matrix. Although the components of the metabolic syndrome were related statistically, the finding of six factors suggested that the components of the metabolic syndrome did not show high degrees of intercorrelation. As a linear method of data reduction, the mode reduced a large set of measured intercorrelation variables into a smaller set of uncorreiated factors, which explained the majority of the variance in the original variables. Factor analysis was well suited for revealing underlying patterns or
structure among variables showing high degrees of intercorrelation |
查看全文
Html全文
查看/发表评论 下载PDF阅读器 |
|
关闭 |
|
|
|