文章摘要
潘金仁,陈坤.队列研究资料相加交互作用可信区间的Bootstrap法估计[J].中华流行病学杂志,2010,31(7):808-811
队列研究资料相加交互作用可信区间的Bootstrap法估计
Bootstrap method-based estimation on the confidence interval for additive interaction in cohort studies
收稿日期:2009-12-17  出版日期:2014-09-10
DOI:
中文关键词: 方法,Bootstrap  相加交互作用  队列研究
英文关键词: Bootstrap  Additive interaction  Cohort study
基金项目:国家科技重大专项(2009ZXl0004—901)
作者单位E-mail
潘金仁 浙江大学医学院公共卫生学院流行病与卫生统计学系, 杭州 310058  
陈坤 浙江大学医学院公共卫生学院流行病与卫生统计学系, 杭州 310058 CK@zju.edu.cn 
摘要点击次数: 5287
全文下载次数: 3169
中文摘要:
      交互作用评估是流行病学数据分析的重要环节,病因学研究中得到广泛应用的指数模型如logistic回归或Cox比例风险模型,常将危险因素的乘积项纳入模型,其乘积项系数反映了因素间的相乘交互作用,而在公共卫生方面交互作用分析应基于加法模型才更合适.文中根据Rothman提出的评估相加交互作用的指标,通过一个队列研究实例拟合Cox比例风险模型,应用RR值计算两因素的相加交互作用指标,并利用内置Bootstrap功能的S-Plus软件,较为方便地得到Bootstrap法估计的可信区间,避免队列研究资料应用OR值计算导致的估值偏差,且有更高的估计精度.相加和相乘交互作用分析的组合模式相当复杂,当两者冲突时宜选择加法模型.
英文摘要:
      Interaction assessment is an important step in epidemiological analysis. When etiological study is carried out, the logarithmic models such as logistic model or Cox proportional hazard model are commonly used to estimate the independent effects of the risk factors. However,estimating interaction between risk factors by the regression coefficient of the product term is on multiplicative scale, and for public-health purposes, it is supposed to be on additive scale or departure from additivity. This paper illustrates with a example of cohort study by fitting Cox proportional hazard model to estimate three measures for additive interaction which presented by Rothman.Adopting the S-Plus application with a built-in Bootstrap function, it is convenient to estimate the confidence interval for additive interaction. Furthermore, this method can avoid the exaggerated estimation by using ORs in a cohort study to gain better precision. When using the complex combination models between additive interaction and multiplicative interaction, it is reasonable to choose the former one when the result is inconsistent.
查看全文   Html全文     查看/发表评论  下载PDF阅读器
关闭