Abstract
万霞,周脉耕,王黎君,陈爱平,杨功焕.运用广义增长平衡法和综合绝世后代法估计1991-1998年全国疾病监测系统的居民漏报水平[J].Chinese journal of Epidemiology,2009,30(9):927-932
运用广义增长平衡法和综合绝世后代法估计1991-1998年全国疾病监测系统的居民漏报水平
Using general growth balance method and synthetic extinct generations methods to evaluate theunderreporting of death at disease surveillance points from 1991 to 1998
Received:April 13, 2009  Revised:July 05, 2007
DOI:
KeyWord: 疾病监测系统  漏报  广义增长平衡法  综合绝世后代法
English Key Word: sease surveillance points  Underreport  General growth balance  Synthetic extinct generations
FundProject:北京市与中央高校共建项目(XKl00230447)
Author NameAffiliationE-mail
WAN Xia Institute of Basic Medical Sciences, ChineseAcademy of Medicaf Sciences, Peking Union Medical College, Beijing 100005, China  
ZHOU Maigeng 中国疾病预防控制中心  
WANG Lijun 中国疾病预防控制中心  
CHEN Aiping V  
YANG Gonghuan Institute of Basic Medical Sciences, ChineseAcademy of Medicaf Sciences, Peking Union Medical College, Beijing 100005, China yangghuan@vip.sina.com 
Hits: 4178
Download times: 1675
Abstract:
      目的运用广义增长平衡法(GGB)和综合绝世后代法(SEG)估计1991-1998年全国综合疾病监测系统(DSP)的居民漏报水平。方法分别采用以上两种方法对DSP 1991-1998年居民分年龄别漏报率进行估计,其中GGB法是通过以死亡率为自变量,以进入率和增长率差值为应变量拟合一元线性方程,即儿+o)一r.(聋+)=[in(k。/k2)]/t+[(后,k2)“5/c],(算+);SEG法通过2000年人口普查计算的85岁期望寿命值及公式N(x)=f。D(口)·exp[广r(u)du]d(a)来计算。绘制散点图判断分年龄别漏报情况,最后根据计算出的漏报率,对各年龄别死亡率进行漏报校正。结果采用GGB法得出1998年人口相埘于1991年上报的人口完整性为87.29%。1991-1998年死亡漏报率为11.7%,各年龄别的漏报程度不高;而采用SEG法得出199l一1998年DSP数据报告的漏报率为48.0%,而且随着年龄别的上升,报告漏报率呈显著下降趋势。结论GGB法和SEG法较常用的漏报调查方法节约了成本、可以估计一段时期内的平均漏报水平,并且GGB法可以同时估计一段时期内人口的相对完整性和死亡漏报情况,但是其自身也有局限性。采用SEG法和GGB法计算的结果差异比较大,采用GGB.SEG两阶段法对DSP数据获得了很好的死亡漏报估计。
English Abstract:
      Objective Using both general growth balance(GGB)and synthetic extinct generations(SEG)methods to evaluate the underreporting of deaths in disease surveillance points(DSP)from 199l to 1998.Methods We used those two methods to estimate the underreport rate in DSP from 1991一1998.According to GGB method.death rate and the difference between entry rateand growth rate were regarded as independent and dependent variable,respectively,to fit aone.dimensionallinear equation n0(x)一,r0(x+)=[1n(k1/k1)0.5/c]d0(x+).About SEG method.it was calculated by life expectancy at age 85 of national census in 2000 and an equation N(x)=∫-∞D(a)·exp[∫xar(u)du]d(a).Then we drew scatter diagram to evaluate underreporting ofaverage.i_htercensaI a96specifie mortality rates,and made adjustment.Results By GGB method, the population count jn l 998 was 87.29 percent as complete as the count in 1 99 1.For the period of 199l-1998.thenumber ofunderreporting ofdeathswas 11.7 percent.Thetmderreporting ofaverage intercensal age.specific mortality rates was not high.However,when SEG method was used.the underreport rate became 48.0 percent.111e underreporting of average intercensal age·specific mortality rates decreased significantly from younger to older age groups.Conclnsion GGB and SEG could reduce more cost than other underreporting.related survey,and evaluate the underreporting in a defined time period.GGB could also evaluate the underreporting rate of population and death. However.both these two methods had some Iimitations.There was big difference between the results when using SEG and GGB,suggesting that we should try to combine GGB and SEG methods to get the better results.
View Fulltext   Html FullText     View/Add Comment  Download reader
Close