Abstract
徐涛,李卫,陈涛.零频数过多模型在亚健康状态研究中的应用[J].Chinese journal of Epidemiology,2011,32(2):187-191
零频数过多模型在亚健康状态研究中的应用
Application of zero-inflated models On regression analysis of count data:a study of sub-health symptoms
Received:September 21, 2010  
DOI:
KeyWord: 亚健康  零频数过多模型  负二项回归  Poisson回归
English Key Word: Sub-health  Zero-inflated model  Negative binomial regression  Poisson regression
FundProject:
Author NameAffiliationE-mail
XU Tao Cardiovascular Institute and Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100037, China  
LI Wei Institute of Basic Medical Sciences. Chinese Academy of Medical Sciences and School of Basic Medicine. Peking Union Medical College liwei0325@yahoo.com.cn 
CHEN Tao Institute of Basic Medical Sciences. Chinese Academy of Medical Sciences and School of Basic Medicine. Peking Union Medical College  
Hits: 3214
Download times: 1620
Abstract:
      探讨零频数过多(ZI)模型在亚健康症状数研究中的应用.应用Stata 11.0软件拟合ZI模型分析亚健康症状数的危险因素,并用d系数、Vuong检验、O检验、似然比拟合优度检验比较ZI模型与传统负二项回归模型、Poisson回归模型的拟合效果.α=0.939,Vuong检验Z=32.08,P<0.0001,表明此数据的零频数过多.亚健康症状数的(-x)=2.90,s=3.85,过度离散统计量0=308.011,P<0.001,s2>(-x),表明存在过度离散.从4个模型中的拟合优度看,零频数过多的负二项回归(ZINB)模型log likelihood最大,AIC最小,说明ZINB模型的拟合效果最佳.当计数资料中出现过多的零频数时(如亚健康症状数资料),应用ZINB模型能够获得最佳的拟合效果.
English Abstract:
      To explore the goodness of fit about the zero-inflated (ZI) models in analyzing data related to sub-health symptoms in which the counts are non-negative integers. ZI models are conducted with Stata 11.0. The coefficient of a, Vuong test, O test and likelihood test are used to compare the goodness of fit for ZI models with the common used models such as passion model,negative binomial model. When a is 0.939, and the Z statistic of Vuong test is 32.08, P<0.0001,which shows that there are too many zeros. The mean number of sub-health symptoms is 2.90, s=3.85, 0=308.011, P<0.001, s2>(-x), indicating that the data are over-dispersed. In addition, the optimum goodness of fit is found in zero-inflated negative binomial (ZINB) model with the largest log likelihood and the smallest AIC. ZINB seems the optimal model to study those over-dispersed count data with too many zeros.
View Fulltext   Html FullText     View/Add Comment  Download reader
Close